

Conoscere tutto su MachLine® 4 >10

> MachLine accetta ogni sfida della macchina utensile 6 > Ricerca & Sviluppo > La gamma 8-10

Generalità tecniche

11>36 > Precarico, definizione dei simboli 12-14 > Rigidità, deflessione assiale 15 > Influenza di un carico assiale esterno 16 > Fattore di correzione della velocità 17 > Calcolo del mandrino 18-24 > Lubrificazione 25-27 > Guida alla scelta 28-29 > Cuscinetti con sfere in ceramica (CH) 30-31 > Cuscinetti Alta Velocità (ML) 32 > Cuscinetti a tenuta stagna (MLE) 33 > Cuscinetti HNS (N) 34 35-36 > Esempio di montaggio

Gamma MachLine®

> Simboli, marcatura e imballaggio 38-39 > MachLine: le gamme 40-51 > Ghiere di precisione autobloccanti 52-54 > Sintesi delle gamme 55 > Tolleranze e classi di precisione 56-60

Manutenzione e servizi

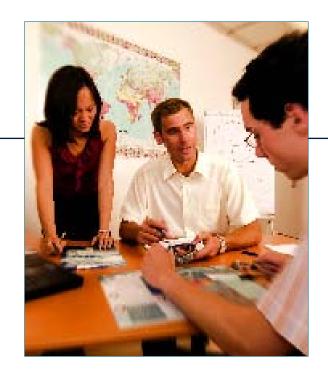
62 > Stoccaggio > Montaggio 63-66 > Analisi vibratoria 67 > Conoscenza, formazione 68

37 > 60

61>68

Precisione, velocità, prestazioni: sulla terra come nell'aria

SNR appartiene alla storia dei cuscinetti... e costruisce il loro avvenire


Fra i maggiori protagonisti sulla scena europea e mondiale, SNR è sempre rimasta fedele al suo ruolo di progettista e di costruttore. Questa conoscenza dei processi si aggiunge ad una presenza commerciale in oltre 200 paesi.

Il nome SNR è anche strettamente legato allo sviluppo della meccatronica, di cui è stata una delle società pioniere, sviluppando un centro di competenza specifico, per affiancare i clienti di questi tre grandi mercati: l'automobile, l'aeronautica e l'industria.

La precisione nasce dall'organizzazione

I cuscinetti di altissima precisione MachLine sono progettati, fabbricati e testati nella nostra divisione aeronautica, dove l'organizzazione è interamente orientata all'ottenimento di "zero difetti".

Qualità: cuscinetti più sicuri... e più puliti

I cuscinetti MachLine soddisfano le norme le più severe in materia di qualità di fabbricazione e di protezione dell'ambiente: certificazioni ISO 9001-V2000, EN 9100, ISO 14001.

MachLine® accetta ogni sfida della macchina utensile

Sempre più veloci, più protetti, più duraturi.

I cuscinetti devono adattarsi alle realtà delle lavorazioni odierne:
alta velocità, riduzione dei tempi morti, maggiore rigidità, tenuta stagna integrata...
Le macchine necessitano di prestazioni sempre più elevate, in un contesto
nel quale la produttività ed il rispetto per l'ambiente devono andare di pari passo.
La gamma MachLine dà risposte precise a tutti questi punti.

La sfida dell'affidabilità

Per non dover scegliere tra velocità di lavorazione e capacità di carico, la gamma MachLine propone una scelta di nuovi riferimenti dal concetto innovativo, completata da un'offerta di ghiere di precisione autobloccanti.

- MachLine Alta Precisione: Standard
- MachLine ML: Alta Velocità
- MachLine CH: Ibridi
- MachLine MLE: Tenuta stagna
- MachLine N: HNS
- Ghiere di precisione autobloccanti

La sfida della velocità

Il tempo di lavorazione è denaro. Maggiore è la velocità di una macchina, maggiore è la sua produttività. Per riuscirci, i cuscinetti devono sopportare altissime velocità: la gamma ML è stata concepita con questa prospettiva.

La sfida della semplicità

Sopprimendo la lubrificazione periodica, si semplifica il compito dell'utilizzatore: la gamma MLE stagna, dispone di una lubrificazione a vita.

Prestazioni incrementate con sfere in ceramica:

X3 durata di vita

+30% di velocità

+10% di rigidità

Tutti i cuscinetti della gamma MachLine sono realizzati con un "difetto di rotazione" di precisione ISO2 (Precisione P4S).

R&S SNR: le prestazioni al servizio della macchina utensile

Per MachLine, SNR ha condotto la sua ricerca in tutti i campi che contribuiscono alle prestazioni, dai materiali alla geometria, fino alle funzioni complementari dei cuscinetti.

- L'acciaio:

Se i cedimenti dovuti all'acciaio sono rarissimi nei cuscinetti MachLine, è perchè SNR ha la totale padronanza dei suoi approvvigionamenti e la tracciabilità dei suoi prodotti ovunque nel mondo. L'assenza di inclusioni nell'acciaio è garanzia di durata del cuscinetto.

- Lubrificazione e protezione:

LubSolid, soluzione adottata per alcune applicazioni, è uno dei sistemi di lubrificazioni « a vita » messa a punto da SNR. Costituisce per MachLine uno degli assi di ricerca: sopporta le alte velocità, migliora la tenuta e protegge l'ambiente meccanico.

Nuovo imballaggio disponibile nel corso del 2006

- La simulazione dei cedimenti:

In questo campo, SNR dispone di un centro prove particolarmente avanzato e di lunga esperienza. MachLine è stata sottoposta ad un elevato numero di test, ed è stata oggetto di numerose simulazioni e di un'approfondita analisi vibratoria.

- Ricerca nella strumentazione dei cuscinetti:

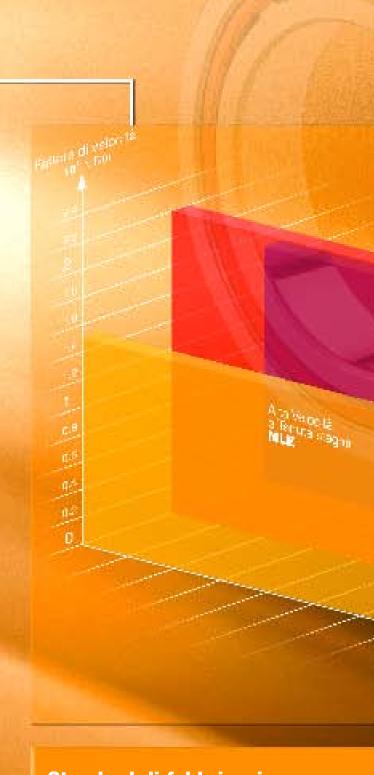
Poiché la microelettronica ed i sistemi di controllo sulla macchina utensile sono sempre più raffinati, la R&S SNR studia le evoluzioni meccatroniche dei prodotti MachLine.

Il contributo della ricerca fondamentale ed applicata:

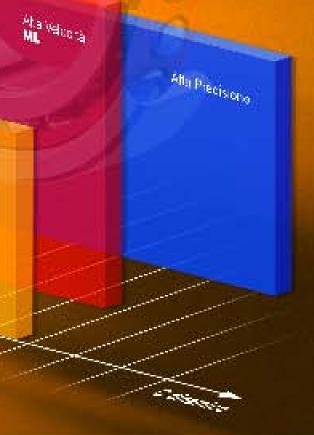
MachLine beneficia, come le altre gamme SNR, di una partecipazione attiva ai Programmi di Ricerca Europei, in collaborazione con i più grandi produttori d'acciaio mondiali e di grandi università.

Sfere di media dimensione per garantire un miglior compromesso tra velocità massima e capacità di carico. 2,2 Milioni N.Dm: le altissime velocità sono raggiunte con la gamma ML.

MachLine®: un universo di soluzioni


ALTA PRECISIONE O

- Serie SNR 71900V e 7000V, con un eccellente compromesso tra le performance di velocità, rigidità, capacità e precisione.
- Serie 7200G1, specialmente concepita per rispondere alle specifiche esigenze delle applicazioni con presenza di forti carichi a prevalenza assiale.
- Varianti in funzione dell'angolo di contatto (C per 15° e H per 25°) e del precarico (leggero, medio o forte).


IBRIDI, CON SFERE IN CERAMICA, **CH**

- Variante possibile per tutte le gamme, tutte le serie e tutte le dimensioni.
 Sfere in Nitruro di Silicio, ed anelli in acciaio, combinano le migliori qualità dei due materiali.
- Livello termico ridotto e velocità limite incrementata. Riduzione delle esigenze di lubrificazione rispetto ad un cuscinetto "tutto in acciaio".
- Rigidità e durata di vita nettamente incrementate.

Standard di fabbricazione:

Precisione 4S
(ISO 2 per tutte le caratteristiche dinamiche di rotazione e ISO 4 per le altre caratteristiche).

ALTA VELOCITÀ ML •

- Costituita dalle serie 71900 e 7000, concepita e sviluppata da SNR per rispondere alle esigenze sempre più severe dei meccanismi ad alta velocità.
- Adattamento della geometria: riduzione del diametro delle sfere, aumento del loro numero ed ottimizzazione nella guida della gabbia sull'anello esterno.
- Differenti varianti in funzione dell'angolo di contatto (C per 17° e H per 25°) e del precarico.

ALTA VELOCITÀ E TENUTA STAGNA **MLE**

Tenuta stagna

- In un mandrino, quando non è indispensabile installare un dispositivo di lubrificazione ad olio, e la lubrificazione a grasso è sufficiente, SNR fornisce una soluzione tecnicamente idonea ed economicamente vantaggiosa: l'utilizzo al montaggio dei cuscinetti della famiglia MLE, composta dalle serie 71900 e 7000.
- Tenute in nitrile fissate sull'anello esterno, senza contatto con l'anello interno, permettono di mantenere la stessa velocità limite di un cuscinetto aperto lubrificato a grasso.
- Varianti in funzione dell'angolo di contatto (C per 17° e H per 25°) e del precarico.

MachLine®: un universo di soluzioni

Cuscinetti HNS: N

Caratteristiche:

Cuscinetti in acciaio inossidabile martensitico all'azoto (materiale usato nell'aeronautica).

- Anelli in XD15N.
- Sfere in ceramica.

Prodotto del « know-how » aeronautico SNR, questo cuscinetto per macchine utensili si distingue per le sue considerevoli prestazioni:

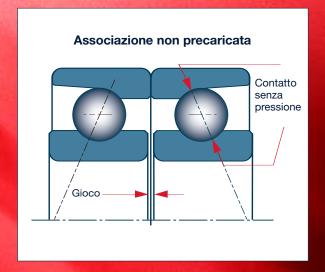
- Incremento della velocità di rotazione
- Miglior resistenza a fatica
- Maggior affidabilità in caso di condizioni di lubrificazione incerte
- Incremento della durata di vita
- Resistenza alla corrosione.

Ghiere autobloccanti di precisione

Disponibili nelle versioni strette o larghe, con 2 o 4 inserti di bloccaggio e serraggio tramite fori ciechi o scanalature, la gamma SNR di ghiere autobloccanti di precisione ricopre l'insieme dei fabbisogni del mercato.

Questi prodotti sono indispensabili:

- per tutti i montaggi di cuscinetti di precisione,
- quando è necessario garantire il precarico di un'associazione di cuscinetti e mantenerlo nel tempo,
- nel caso di sforzi assiali elevati.



Precarico, precaricare un'influenza diretta sull'applicazione

Precarico e messa in precarico

Il precarico è una caratteristica importante dell' associazione: permette di darle una rigidità definita e controllata. Il precarico ha inoltre un'influenza diretta sui parametri di carico e di velocità di rotazione ammissibili.

Precaricare un'associazione significa applicare in modo permanente uno sforzo assiale attraverso il serraggio delle facce dei cuscinetti. Questo sforzo provoca una deformazione elastica tra piste e sfere, generando tra questi componenti una pressione di contatto.

Associazione precaricata

Pr

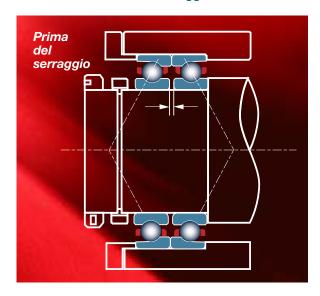
Cedimento della sfera
nella pista

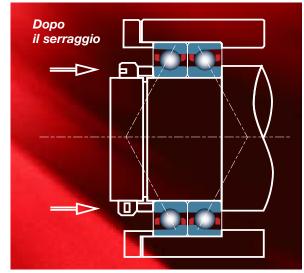
Esempio: associazione 7014HVDBJ84

Gioco: 0,012 mm

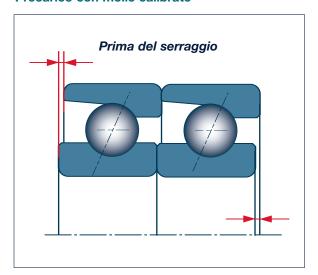
Precarico: Pr = 1100 N

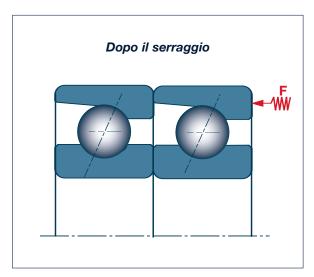
Cedimento: 0,0025 mm


Pressione di contatto:


anello interno: 960 N/mm²
 anello esterno: 840 N/mm²

Lo sforzo assiale è chiamato precarico (Pr).


Due metodi d'applicazione


Precarico attraverso il serraggio delle facce dei cuscinetti di un'associazione

Precarico con molle calibrate

Definizione dei simboli

- Pr Precarico
- a Differenza tra i 2 distanziali (µm)
- K Costante di cedimento (µm (daN)-2/3)
- Pr_i Precarico iniziale (daN)
- Pr_s Precarico desiderato (daN)
- PE Precarico d'equilibrio di un'associazione
- CD Carico di distacco
- Fa Carico assiale
- Fr Carico radiale

- P Carico dinamico equivalente
- C Carico dinamico di base
- P₀ Carico statico equivalente
- C₀ Carico radiale statico di base
- N Velocità di rotazione (giri/min)
- L₁₀ Durata di vita nominale (h)
- f_s Fattore di sicurezza
- L_{na} Durata di vita corretta (h)
- N.Dm Fattore di velocità

Precarico: parametri da non trascurare

Livelli di precarico

SNR ha definito 3 livelli di precarico. Ognuno di essi corrisponde ad un livello di pressione di contatto adatto alle condizioni di funzionamento:

- Precarico leggero (codice 7):

Applicazioni ad alta velocità e carico ridotto.

Precarico medio (codice 8):
 Miglior compromesso tra velocità e carico.

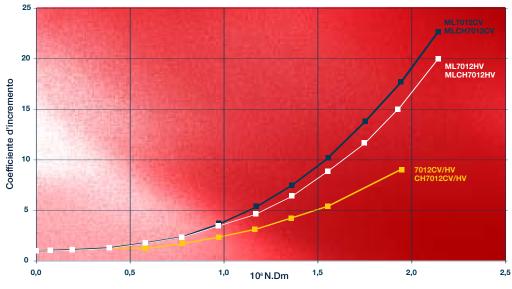
Precarico forte (codice 9):
 Applicazioni con carichi elevati e velocità ridotta.

- Per rispondere a particolari necessità di ottimizzazione nel funzionamento di un mandrino, SNR può realizzare **precarichi specifici su richiesta** (codice X). Nel caso in cui un precarico specifico sia necessario, questo può essere ottenuto utilizzando cuscinetti con un precarico standard, assemblati con distanziali di lunghezze diverse. La formula seguente permette di calcolare la differenza di lunghezza tra due distanziali per modificare il precarico dell'associazione:

$$a = 2K(Pr_i^{2/3} - Pr_s^{2/3})$$

a: differenza di lunghezza tra i 2 distanziali (µm) K: costante di cedimento (vedere pagina 44) Pr.: Precarico iniziale (daN)

Pr_s: Precarico desiderato (daN)


Deflessione assiale di un cuscinetto a sfere a contatto obliquo a pagina 15.

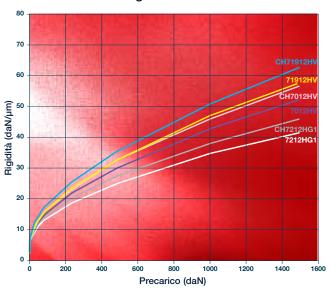
Fattori influenti sul precarico

I seguenti fattori possono influire sul valore del precarico:

- L'interferenza del montaggio (accoppiamenti),
- La velocità di rotazione,
- La temperatura, eventualmente associata ai materiali dell'albero e dell'alloggiamento,
- La geometria dei pezzi adiacenti.

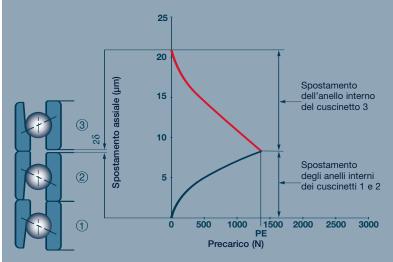
Conviene non trascurare questi parametri durante la progettazione di un mandrino. Per qualsiasi complemento d'informazione, i tecnici SNR sono a Vostra disposizione.

Incremento
del precarico
in funzione della
velocità di rotazione:
comparazione
tra i cuscinetti
7012 e ML7012
nelle versioni con sfere
acciaio o ceramica.


Rigidità in funzione del precarico

Esempio di un cuscinetto 7012 in DB

Con l'aumento del precarico, la rigidità cresce in modo lineare.


Confronto della rigidità in funzione delle serie

Deflessione assiale di un cuscinetto a sfere a contatto obliquo

Quando un cuscinetto è sottoposto ad un carico assiale **Fa (daN)**, uno dei suoi anelli si sposta assialmente rispetto all'altro di un valore δa : $\delta a = K(Fa)^{2/3}$

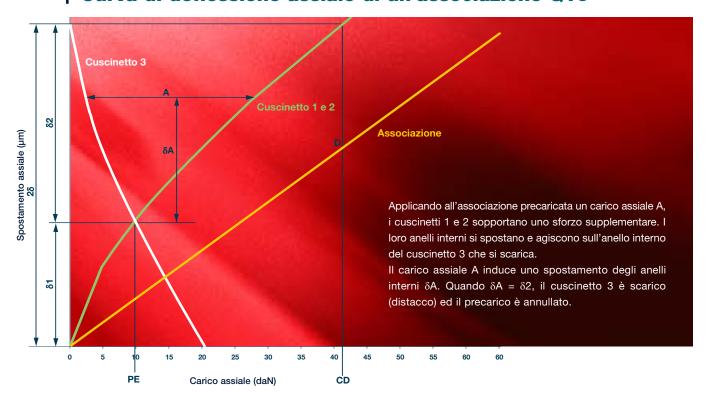
K è la costante di cedimento assiale di ogni cuscinetto, il suo valore è indicato nella tabella a pagina 44.

Applicazione del precarico

Esempio di un'associazione Q16, con un precarico dei cuscinetti = Pr. Tra gli anelli interni dei cuscinetti 2 e 3 sussiste uno spazio 2δ prima dell'applicazione del precarico.

$2\delta = 2K(Pr)^{2/3}$

Se vengono serrati gli anelli interni annullando lo spazio 2δ , il loro spostamento è illustrato dal grafico a fianco. Il precarico di equilibrio dell'associazione è uguale a **PE** quando lo spazio 2δ è annullato.



Influenza di un carico assiale esterno

l Curva di deflessione assiale di un'associazione Q16

Caratteristiche

- Spostamento assiale: Uguale a δ2 fino all'annullamento del precarico. In prima approssimazione, è definito dalla linea retta OD. Oltre il punto D, la curva è quella dei cuscinetti che sopportano il carico assiale A: cuscinetti 1 e 2 nell'esempio qui sopra.
- Rigidità assiale: Fino all'annullamento del precarico, la rigidità media è uguale a CD/δ2.
- Carico di distacco CD: È il carico assiale che provoca lo "scollamento" del/dei cuscinetti in opposizione: cuscinetto 3 nell'esempio qui sopra.

Valori caratteristici del precarico d'equilibrio PE e del carico di distacco CD

Associazione	PE	CD
DB - DF	Pr	2.83 Pr
Q16	1.36 Pr	5.66 Pr
Q21	2 Pr	5.66 Pr

Pr: Precarico

Le curve caratteristiche di un'associazione sono fornibili a richiesta. I valori di rigidità assiale e radiale dei cuscinetti precaricati sono definiti a pagina 44.

Fattori di correzione di velocità

La velocità di rotazione massima, definita velocità limite, dipende dalla geometria del cuscinetto, dal tipo di lubrificazione e dal livello termico tollerato.

In funzione dell'associazione

Quando i cuscinetti sono associati, occorre correggere la velocità limite del cuscinetto singolo in funzione dell'associazione.

La velocità limite del cuscinetto singolo è definita a pagina 41. Per i cuscinetti MachLine ibridi, questo valore aumenta del 30% (vedi pagina 31).

In funzione del precarico

La scelta di uno dei tre livelli di precarico proposti (leggero - medio - forte) dipende dalla velocità massima del mandrino, dalla rigidità ricercata e dal carico di distacco.

Correzione della velocità*

Quando le scelte precedenti sono state fatte, è importante assicurarsi che queste permettano il raggiungimento della velocità massima del mandrino.

Per altri tipi di associazione, contattare SNR.

Associazione	e	Precarico	
	Leggero	Medio	Forte
DT	0.90	0.80	0.65
DB	0.80	0.70	0.55
DF	0.75	0.65	0.40
Q16	0.70	0.60	0.35
Q21	0.65	0.55	0.30

Ogni scostamento rispetto alle tolleranze geometriche richieste penalizza la velocità massima di un'associazione ed il buon funzionamento del mandrino.

^{*} Questo fattore è fornito a titolo indicativo come aiuto al dimensionamento del mandrino. In caso di funzionamento continuativo vicino alla velocità limite, è necessario verificare il livello termico raggiunto ed assicurarsi che sia compatibile con la precisione ricercata.

Calcolo del mandrino: metodo di calcolo semplificato e corretto

Pre-dimensionamento dei supporti

Deve essere verificato ed ottimizzato sia col metodo di calcolo semplificato e/o corretto della durata di vita dei cuscinetti, sia utilizzando un programma di calcolo adatto a questo tipo d'applicazione.

Durata di vita richiesta

La durata di vita dei supporti di un mandrino è legata alla perdita di precisione in lavorazione o ad un riscaldamento anomalo.

Questa perdita di precisione è dovuta al degradamento superficiale del contatto pista / sfere provocata da usura, inquinamento, ossidazione o deterioramento del lubrificante (olio o grasso).

La durata di vita calcolata L_{10} è legata alla fatica del materiale. L'esperienza dimostra che per avere un mandrino adeguatamente dimensionato, la durata di vita L_{10} deve essere dell'ordine di 20 000 ore.

Metodo di calcolo semplificato

Il metodo più semplice, secondo la norma ISO 281, permette di calcolare la durata di vita teorica raggiunta dal 90% dei cuscinetti sottoposti a carico dinamico.

Il metodo di calcolo semplificato (a fianco) si basa sulla fatica del materiale come causa di cedimento.

Carico dinamico equivalente

Gli sforzi di taglio e di trasmissione devono essere ricondotti ad ogni supporto come normalmente fatto in ambito meccanico.

- Carico assiale: È da ripartire uniformemente su ogni cuscinetto che lo sopporta. Se « m » cuscinetti sopportano questo carico:

$$Fa = A/m$$

A = sforzo assiale applicato al supporto.

- Calcolo del carico dinamico equivalente:

$$P = X Fr + Y Fa$$

I coefficienti X e Y sono indicati nella tabella accanto. Per definirli, occorre calcolare il rapporto Fa/Co, determinare e ed infine calcolare Fa/Fr per confrontarlo ad e.

Co: carico radiale statico di base.

Se i carichi applicati variano in funzione dei diversi tipi di lavorazione, il carico radiale equivalente ponderato vale:

$$P = (t_1P_1^3 + t_2P_2^3 + + t_iP_i^3)^{1/3}$$

 t_i = tasso di utilizzo P_i = carico equivalente corrispondente

- Carico radiale: È da ripartire uniformemente su ogni cuscinetto del supporto. Con « n » cuscinetti nel supporto, il carico radiale applicato ad ogni cuscinetto sarà uguale a:

 $Fr = R / n^{0.9}$

R: sforzo radiale applicato al supporto

	Fa/Co	е	Fa/	Fr ≤ e	Fa/F	r > e
			X	Y	X	Υ
	0.015	0.38	1	0	0.44	1.47
	0.029	0.40	1	0	0.44	1.40
	0.058	0.43	1	0	0.44	1.30
	0.087	0.46	1	0	0.44	1.23
15°	0.12	0.47	1	0	0.44	1.19
	0.17	0.50	1	0	0.44	1.12
	0.29	0.55	1	0	0.44	1.02
	0.44	0.56	1	0	0.44	1.00
	0.58	0.56	1	0	0.44	1.00
25°	-	0.68	1	0	0.41	0.87

Durata di vita nominale

Durata in ore: $L_{10} = (C/P)^3 \cdot 10^6/60N$

C: carico dinamico di base (vedi pagina 41) Co: carico radiale statico di base (vedi pagina 41) N: velocità di rotazione dell'anello rotante in giri/min Il calcolo della durata di vita dei cuscinetti di un mandrino è ricondotto al calcolo della durata di vita del cuscinetto più sollecitato.

Calcolo del mandrino: metodo di calcolo semplificato e corretto

Carico statico equivalente

Nel caso in cui un cuscinetto sia sottoposto a carichi statici combinati, è necessario calcolare il carico statico equivalente e confrontarlo con la capacità di carico statica del cuscinetto.

- Calcolo del carico statico equivalente:

Po = Xo Fr + Yo Fa

I coefficienti **Xo** e **Yo** sono indicati nella tabella accanto. Per definirli, occorre calcolare il rapporto **Fa/Fr.**

La capacità di carico statica del cuscinetto è indicativa e non rappresenta un limite preciso da non superare. È necessario considerarla per valutare, ad esempio, l'influenza dei picchi di carico creati dai sistemi di sbloccaggio degli utensili o di avanzamento barra.

- Capacità statica di base di un cuscinetto Co:

È definita dalla **norma ISO 76** come il carico radiale che genera a livello del contatto (corpo volvente / pista di rotolamento) più caricato una pressione di Hertz pari a 4.200 Mpa.

	Fa/Fr	Хо	Yo
15°	≤1.09	1	0
	>1.09	0.50	0.46
25°	≤1.31	1	0
	>1.31	0.50	0.38

Fattore di sicurezza: f_s = i Co / Po

i: Numero di cuscinetti

Co: Carico statico di base del cuscinetto

Po: Carico statico equivalente

Valori indicativi minimi per il fattore di sicurezza f_s:

• 2.5 - 3 caso generale

• 1 - 1.5 nel caso di sforzi assiali di breve durata.

Metodo di calcolo corretto

La norma ISO 281 definisce una formula di durata di vita nominale corretta L_{na} in funzione della durata nominale di base L_{10} : $L_{na} = a_1.a_2.a_3.L_{10}$

- Coefficiente a₁

Coefficiente correttivo per un'affidabilità diversa dal 90%, come riportato nella tabella seguente:

Durata	Affidabilità	Probabilità di cedimento	a ₁
L ₁₀	90%	10	1.00
L ₅	95%	5	0.62
L ₄	96%	4	0.53
L ₃	97%	3	0.44
L ₂	98%	2	0.33
L ₁	99%	1	0.21

- Coefficiente a₂

Coefficiente correttivo in funzione del materiale utilizzato e della geometria interna.

Per alcune applicazioni, i cuscinetti possono essere fabbricati con acciai speciali diversi da quelli convenzionali, oppure avere una diversa geometria interna. Queste scelte conferiscono una durata di vita molto superiore a quella del cuscinetto standard. In questo caso, il coefficiente a₂ è superiore a 1 ed il suo valore è il risultato di verifiche sperimentali

ottenute nel centro prove e ricerche SNR.

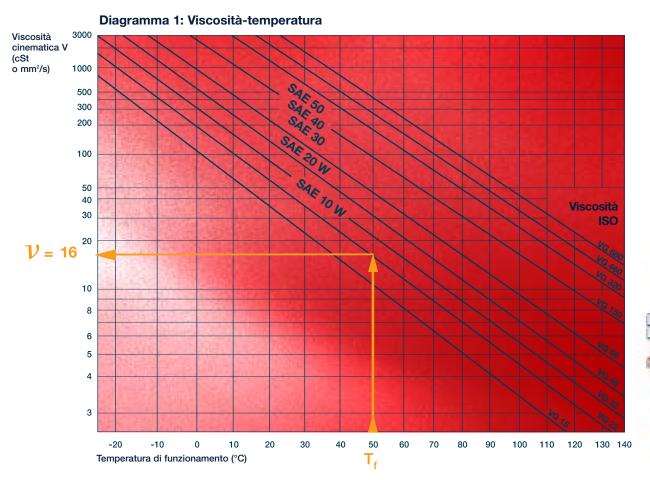
Materie	a_2
100Cr6	1
XD15N	2.8

- Coefficiente a₃

Coefficiente correttivo relativo alle condizioni di funzionamento: inquinamento, lubrificazione, temperatura... Da notare che i coefficienti a_2 e a_3 non sono indipendenti.

- Coefficiente a_{3pol}

Coefficiente correttivo legato alla natura dell'inquinante ed al livello di carico dei corpi volventi.

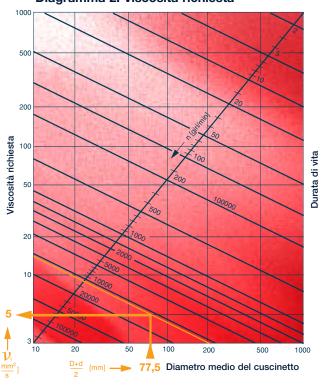

Nella maggior parte dei casi, il funzionamento di un cuscinetto mandrino avviene in condizioni di pulizia ottimali: il coefficiente a_{3pol} in questo caso uguale a 1.

Per altre applicazioni, meno protette, il coefficiente a_{3pol} può assumere i valori seguenti:

Filtraggio	a _{3pol}
< 3 µm	1
5 μm	0.95
10 µm	0.90

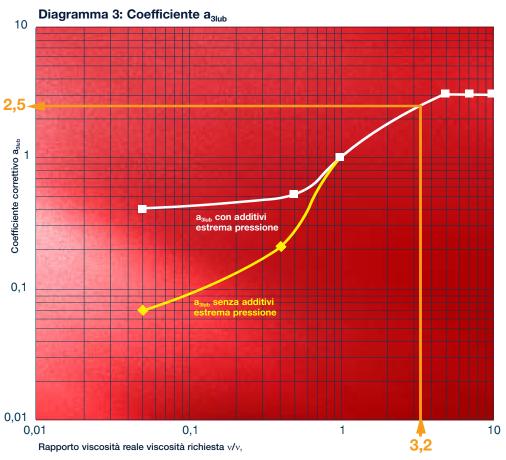
- Coefficiente a_{3lub}

La durata di vita dei cuscinetti è influenzata dall' efficacia della lubrificazione, fra l'altro caratterizzata dallo spessore del film lubrificante. La teoria elasto-idrodinamica indica che quest'ultimo dipende quasi esclusivamente dalla viscosità dell'olio e della velocità. I diagrammi qui di seguito permettono di determinare il coefficiente a_{3lub}.



Calcolo del mandrino: metodo di calcolo semplificato e corretto

Diagramma 2: Viscosità richiesta


Esempio

Cuscinetto 7012CV a 13000 giri/min lubrificato con olio VG22 e con temperatura di funzionamento = 50°C.

Diagramma 1: Viscosità dell'olio VG22 a 50°C v = 16 cSt

Diagramma 2: Viscosità richiesta per un 7012CV con diametro medio Dm = 77.5 mm a 13000 giri/min: $v_1 = 5 \text{ cSt}$

Diagramma 3: Con un rapporto di viscosità $v/v_1 = 16/5 = 3.2$, il coefficiente $a_{3lub} = 2.5$

- Coefficiente a_{3temp}

La temperatura di utilizzo dei diversi elementi del cuscinetto è fornita nella tabella sottostante:

Elemento	Temp. mass.	Note
Anelli	150°C	-
Sfere - acciaio	150°C	-
- ceramica	> 200°C	-
Gabbia - resina fenolica	100°C continuo 120°C di punta	Standard
- bronzo	200°C	Su richiesta
- PEEK	120°C continuo 150°C di punta	Su richiesta
Guarnizioni	100°C continuo 120°C di punta	- -
Grasso	120°C	-

Per la maggior parte delle applicazioni relative ai mandrini di macchine utensili, è ammesso un coefficiente $a_{3temp} = 1$ poiché la temperatura di funzionamento è nettamente inferiore ai 100°C.

Per altre applicazioni, il coefficiente a_{3temp} può assumere i valori seguenti:

Temperatura	$a_{3\text{temp}}$
< 100°C	1
110°C	0.96
120°C	0.92
130°C	0.88
140°C	0.84
150°C	0.8

Durata di vita infinita

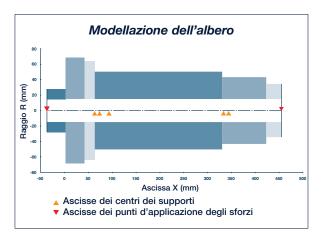
Nell'ambito dell'elaborazione dei materiali, è possibile definire delle condizioni per le quali i cuscinetti raggiungono una durata di vita infinita:

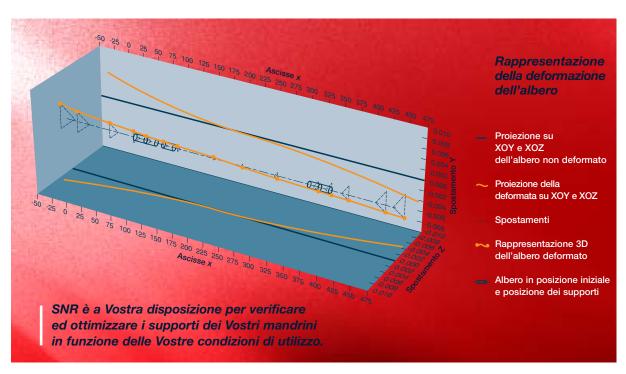
- Separazione totale delle superfici metalliche con un film d'olio. $a_{3lub} > 1.5$.
- Inquinamento del film d'olio estremamente limitato. $a_{3\text{pol}}=1. \label{eq:a3pol}$
- Carico applicato: Co/Po > 9, corrispondente a pressioni Hertziane inferiori a:
 2000 MPa per l'acciaio 100Cr6
 2300 MPa per l'acciaio XD15N

Calcolo del mandrino: simulazioni

Software di calcolo

La R&S SNR ha definito un software di calcolo che permette di verificare e di ottimizzare le dimensioni dei supporti di un mandrino. Questo software permette una simulazione più completa e precisa rispetto ai metodi di calcolo semplificati o corretti. Permette la modellazione del mandrino e dei suoi supporti, di considerare il carico, la velocità di rotazione e la lubrificazione. Il software simula l'equilibrio di un mandrino in rotazione montato su cuscinetti e sottoposto a sforzi esterni.


• Determina:


- gli sforzi ed i cedimenti a livello dei contatti tra sfere ed anelli,
- i carichi applicati ad ogni cuscinetto,
- gli spostamenti degli anelli interni ed esterni,
- la deformazione dell'albero,
- la rigidità assiale e radiale rispetto ad un punto di riferimento scelto.

• Calcola:

- le pressioni e le dimensioni dell'ellissi di contatto,
- la durata di vita L_{10} dei cuscinetti calcolata a livello di ogni singolo contatto,
- lo spessore del film lubrificante (La durata di vita sarà corretta in caso di film insufficiente).

Rappresentazione grafica dei dati d'ingresso e dei risultati SNR

Lubrificazione è un elemento essenziale per il corretto funzionamento di un cuscinetto. Permette di evitare l'usura ed il grippaggio interponendo un film d'olio tra i corpi volventi e le piste di rotolamento. Garantisce inoltre il raffreddamento del cuscinetto evacuando il calore prodotto a livello dei contatti e lo protegge contro la corrosione.

Scelta del tipo di lubrificazione

Si determina in funzione della velocità massima di rotazione, dei carichi applicati e di conseguenza della quantità di calore da evacuare. È inoltre strettamente legata alla progettazione della macchina.

- La lubrificazione a grasso è consigliata quando la velocità di rotazione massima richiesta lo consente
- e quando il calore prodotto può essere dissipato per conduzione senza provocare un riscaldamento anomalo (ΔT generalmente ammesso 20°C 25°C).
- La lubrificazione ad olio (nebbia d'olio o aria-olio)
 è raccomandata negli altri casi.

Lubrificazione ad olio

Da adottare in caso di velocità di rotazione superiori a quelle ammesse da una lubrificazione a grasso. SNR raccomanda la scelta di un olio a bassa viscosità, dell'ordine di 20 cSt a 40°C, per minimizzare il riscaldamento (tranne in caso di carichi molto elevati).

- Lubrificazione a nebbia d'olio: Una piccola quantità d'olio polverizzato in una vena d'aria garantisce la lubrificazione. La circolazione d'aria, filtrata ed esente da umidità, garantisce il raffreddamento. Ad esempio, per un cuscinetto 7016, la portata
- d'olio sarà indicativamente di 50 mm³/h. La pressione dell'aria da 0,7 a 2 bar. La sovrapressione generata nel mandrino migliora la sua protezione.
- Lubrificazione aria-olio: Gocce d'olio sono inviate ad intervalli regolari in un flusso d'aria. Questo sistema, meno inquinante del sistema a nebbia d'olio, permette un miglior controllo della quantità di lubrificante introdotto nel cuscinetto.

Parametri relativi ad un cuscinetto 7016 con lubrificazione

- Portata d'olio: 60 mm³/h per cuscinetto
- Intervallo d'iniezione: 8 min
- Pressione d'aria: 1,0 a 2,5 bar
- Osservazione: I parametri sono forniti a titolo indicativo e devono essere ottimizzati per ottenere il miglior livello termico.
- Condotti di lubrificazione: Il lubrificante deve arrivare il più vicino possibile al cuscinetto ed essere introdotto tra l'anello interno e la gabbia.
 - Il diametro primitivo relativo alla posizione d'arrivo dell'olio (D5) e lo spazio fra l'anello interno e la gabbia (E) sono definiti a pagina 40.

Lubrificazione adeguata: una garanzia di longevità

Lubrificazione a grasso

SNR raccomanda il grasso SNR-LUB GV⁺. Garantisce una buona tenuta ad alta velocità, ai carichi ed una bassa coppia in funzionamento.

SNR-LUB GV+:

- Base: olio sintetico, sapone di litio.
- Additivi: antiossidante, antiusura, anticorrosione, estrema pressione.
- Bassa viscosità: 15 cSt a 40°C
- Temperatura d'utilizzo: 50°C a + 120°C.

Il grasso LUB GV⁺ è particolarmente raccomandato per le applicazioni con alberi verticali.

Il volume di grasso consigliato da SNR è definito nella tabella accanto, e può variare in funzione della velocità di utilizzo. I fattori correttivi del volume di grasso sono indicati nella tabella sottostante.

% velocità limite	Fattore correttivo
< 35 %	1
35 % à 75 %	0,75
> 75 %	0,60

Gamma MachLine Alta velocità - ML

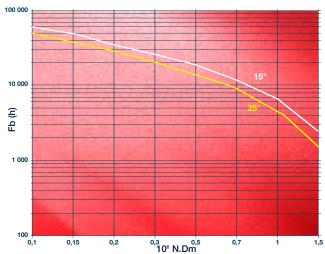
Volume medio di grasso per cuscinetto in cm³ - tolleranza ± 10%

Alesaggio codice	Serie 70	Serie 719
00	0.1	0.1
01	0.2	0.1
02	0.3	0.1
03	0.3	0.1
04	0.6	0.3
05	0.8	0.4
06	1.0	0.5
07	1.4	0.6
08	1.7	1.0
09	2.2	1,1
10	2.4	1.1
11	4.4	2.3
12	4.6	2.6
13	5.2	2.7
14	6.7	4.3
15	7.1	4.6
16	9.3	4.8
17	9.6	6.5
18	12.9	6.8
19	12.8	7.0
20	13.5	9.6
21	18.3	-
22	22.1	10.3
24	23.5	13.3
26	34.8	17.5

Esempio: Cuscinetto 7016 previsto per essere utilizzato alla velocità di 7.000 giri/min (64% della sua velocità limite a grasso). Volume di grasso da prevedere: 10 cm³ x 0,75 = 7,5 cm³

N.Dm = prodotto del diametro medio del cuscinetto (mm) per la velocità di rotazione (giri/min).

Introduzione del grasso: vedere pagina 64.


Gamma MachLine Alta Precisione

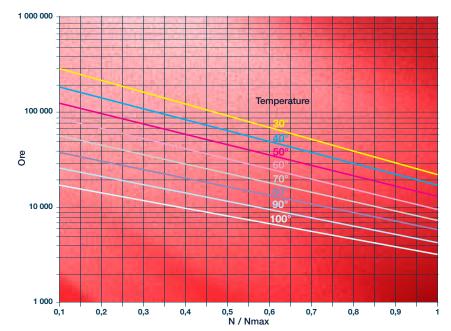
Volume medio di grasso per cuscinetto in cm³ - tolleranza + 10%

in cn	n³ - tollerai	nza ± 10%	
Alesaggio codice	Serie 70	Serie 72	Serie 719
00	0,3	0,4	0,2
01	0,4	0,5	0,2
02	0,5	0,6	0,3
03	0,6	0,8	0,3
04	1,0	1,3	0,5
05	1,2	1,7	0,6
06	1,6	2,3	0,7
07	2,0	3,3	1,0
08	2,5	3,5	1,5
09	3,2	5,3	1,6
10	3,4	6,2	1,7
11	4,7	7,5	2,2
12	5,0	9,2	2,3
13	5,3	11	2,5
14	7,5	13	4,2
15	7,8	14	4,3
16	10	16	4,5
17	11	21	6,3
18	14	26	6,5
19	15	-	7,3
20	16	38	9,7
21	19	-	10
22	24	52	10
24	25	63	14
26	40	-	19
28	42	-	20
30	51	-	30
32	64	-	31
34	83	-	32
36	107	-	50
38	110	-	52
40	140	-	74
44	190	-	80
48	-	-	86

Rilubrificazione

 Frequenza di rilubrificazione di base: Il diagramma sottostante permette di determinare la frequenza di base (espressa in ore) in funzione del tipo di cuscinetto.

Questi valori sono dati a titolo indicativo e vanno confermati da prove.


 Correzione della frequenza di rilubrificazione:
 La frequenza di base Fb può essere corretta dai coefficienti indicati nella tabella sottostante, in relazione alle particolari condizioni di funzionamento del mandrino, secondo della relazione: Fc = Fb.Te.Ta.Tt

Coeff.	Condizioni	Livello \	/alore coeff.
Те	Ambiente		
	- polvere	Debole	1
	- umidità	Medio	0.8
	- condensa	Forte	0.5
Та	Applicazione		
	- albero verticale	Debole	1
	 vibrazioni 	Medio	0.8
	- urti	Forte	0.5
Tt	Temperature	< 75°C	1
		75° a 85°C	0.8
		85° a 120°	C 0.5

Durata di utilizzo del grasso

Molto spesso, la scelta dei cuscinetti di un mandrino determina un livello delle pressioni Hertziane tale da garantire una durata di vita a fatica praticamente infinita. Per queste applicazioni, la durata di utilizzo del grasso diventa quindi un fattore determinante per definire la durata di vita del cuscinetto. Questa

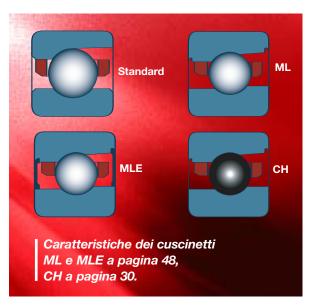
durata è definita come il periodo nel quale il grasso conserva intatte le sue caratteristiche iniziali ed il suo potere lubrificante. Per un grasso definito, questa è principalmente funzione della velocità di rotazione del cuscinetto e della sua temperatura di funzionamento.

N: Velocità di rotazione del cuscinetto Nmax: Velocità limite di rotazione del cuscinetto T: Temperatura di funzionamento (°C)

Questi valori sono dati a titolo indicativo e vanno confermati da prove.

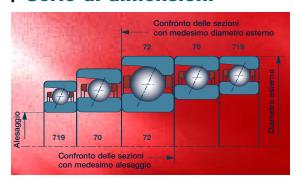
Guida alla scelta MachLine®

La gamma MachLine è stata progettata per rispondere alle esigenze dei mandrini utilizzati nella maggior parte delle macchine utensili: torni, fresatrici, foratrici, centri di lavoro, rettificatrici, mandrini per alta velocità...


L'ottimizzazione dei parametri relativi alla precisione di rotazione, rigidità, geometria, livello termico e vibratorio, durata di vita, consente alla gamma MachLine di sopportare al meglio le sollecitazioni di taglio, di trasmissione e di velocità di rotazione elevate.

Caratteristiche dei cuscinetti a contatto obliquo

- Anelli e sfere in acciaio 100Cr6 di altissima qualità,
- Due angoli di contatto: 15° e 25° (17° e 25° per la gamma ML e MLE)
- Gabbia in resina fenolica stratificata centrata sull'anello esterno (a richiesta possibilità di gabbia in Bronzo o PEEK)
- Tre livelli di precarico (a richiesta possibilità di precarico specifico)
- Precisione standard P4S: ISO4 (ABEC 7) per le caratteristiche dimensionali e ISO2 (ABEC 9) per l'insieme delle caratteristiche dinamiche. Possibilità di fornitura del cuscinetto con tutte le caratteristiche (dimensionali e dinamiche) in precisione ISO 2.


Il nostro know-how ci permette di realizzare con grandissima precisione l'allineamento, (con precarico applicato), fra l'anello esterno e l'anello interno, garantendo uno scostamento inferiore a 2µm. Questa caratteristica, non normalizzata, determinando con esattezza il valore del precarico, influenza direttamente la rigidità ed il comportamento del mandrino.

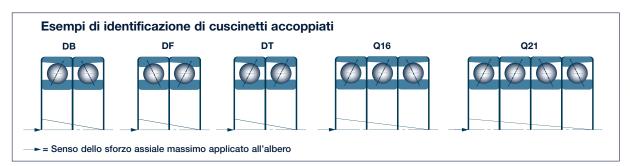
Confronto delle geometrie interne

- MachLine Alta Velocità ML: la diminuzione del diametro delle sfere, l'incremento del loro numero e la miglior guida della gabbia sull'anello esterno, consentono un incremento di velocità del 30% rispetto alla gamma standard.
- MachLine a Tenuta Stagna MLE: l'utilizzo di guarnizioni senza contatto sui cuscinetti ML ed una lubrificazione a grasso consentono prestazioni di velocità paragonabili a quelle di un cuscinetto standard lubrificato ad olio.
- MachLine Ibridi CH: un ulteriore miglioramento delle prestazioni dei cuscinetti è possibile con l'utilizzo di sfere in ceramica.

Serie di dimensioni

Definizione dei cuscinetti per serie

Serie	Definizione	
7000	V	
71900	V	
7200	G1	


- Definizione V: le serie 71900 e 7000 sono le più idonee a raggiungere elevate velocità di rotazione.
 Rappresentano il miglior compromesso tra velocità, capacità, rigidità e precisione.
- **Definizione G1:** appositamente studiata per rispondere alle esigenze della serie 7200, idonea a sopportare forti carichi in prevalenza assiali.

Scelta della versione: SNR offre molteplici possibilità di realizzare un'associazione di cuscinetti.

Caratteristiche delle versioni proposte

- Cuscinetto UNIVERSALE, designazione U: sottoposto al precarico scelto, le facce dell'anello interno e dell'anello esterno si trovano sullo stesso piano. Questo cuscinetto permette di realizzare ogni tipo di associazione.
- Associazioni di cuscinetti UNIVERSALI, designazioni DU, TU, QU...: i diametri esterni ed interni dei cuscinetti di ogni associazione, vengono selezionati in un campo di tolleranza il cui valore massimo è pari alla metà della tolleranza ISO.
- Associazioni di cuscinetti ACCOPPIATI, designazioni DB, DF, DT, Q16, Q21...: questi gruppi non sono separabili e presentano le caratteristiche sequenti:
- Ottimizzazione del precarico
- I diametri esterni ed interni dei cuscinetti di ogni associazione, vengono selezionati in un campo di tolleranza il cui valore massimo è pari alla metà della tolleranza ISO
- Identificazione dell'associazione con una « V » sul diametro esterno dei cuscinetti che la compongono.

Le caratteristiche ottenute, in particolare l'altissimo livello di precisione del precarico, permettono di avere un mandrino più preciso, con una rigidità ed una durata di vita ottimali.

Tolleranze particolari

In alcune applicazioni specifiche possono essere necessarie, per il diametro esterno e l'alesaggio, tolleranze ridotte e centrate rispetto alla tolleranza ISO. In tal caso, il cuscinetto è identificato dalla lettera R, come indicato nell'esempio di codifica seguente: 71912CVURJ74

MachLine[®] CH - Ibridi: la scelta della sfera in ceramica

La definizione interna SNR permette d'incrementare notevolmente le prestazioni e la durata di vita dei cuscinetti con l'utilizzo di sfere in ceramica.

Proprietà della ceramica

Materiale utilizzato: Nitruro di Silicio: Si₃N₄

- massa volumica ridotta: 3,2 kg/dm³
- ridotto coefficiente di dilatazione
- modulo d'elasticità elevato: 310.000 N/mm²
- non magnetica

- · ridotto coefficiente d'attrito
- isolante elettrico
- ridotta conducibilità termica
- anticorrosione

| Risultati significativi

Le proprietà fisiche della ceramica permettono:

- l'incremento della velocità di rotazione a parità di livello termico
- il miglioramento della rigidità dei cuscinetti
- l'incremento della loro durata di vita

Tutte le gamme MachLine (Alta Precisione, ML, MLE) e le serie (71900, 7000 e 7200) sono disponibili in versione ibrida.

Prestazioni MachLine CH - Ibridi

Incremento della velocità di rotazione:

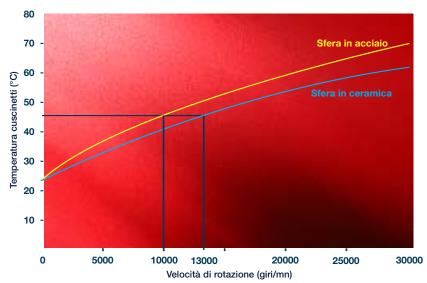
Dal punto di vista cinematico, i cuscinetti ibridi SNR generano un minore riscaldamento rispetto a quelli con sfere in acciaio.

A livello termico uguale, possono quindi funzionare ad una velocità di rotazione superiore del 30% circa.

Miglioramento della rigidità: +10%

Il modulo di elasticità della ceramica, maggiore di quello dell'acciaio, permette, a parità di precarico, di incrementare la rigidità del cuscinetto ibrido del 10% circa.

Le caratteristiche dei cuscinetti "ibridi" permettono in alcuni casi l'utilizzo di una lubrificazione a grasso, laddove la velocità di rotazione richiesta impone, per i cuscinetti con sfere in acciaio, l'impiego di una lubrificazione aria- olio. Tale possibilità, qualora praticabile, consente un notevole vantaggio economico.



Le qualità tribologiche della ceramica ed in particolare il suo basso coefficiente d'attrito e la sua attitudine a tollerare meglio una lubrificazione limite, permettono una maggiore resistenza all'usura ed al degradamento delle piste di rotolamento. In funzione delle condizioni di utilizzo, si constata una durata di vita reale da 2 a 3 volte superiore a quella dei cuscinetti con sfere in acciaio (a parità di condizioni di funzionamento).

Lubrificazione: Riduzione dei costi

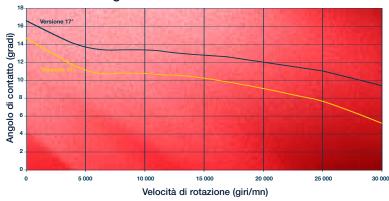
I lubrificanti utilizzati per i cuscinetti con sfere in 100Cr6 sono generalmente compatibili con le sfere in ceramica. Alcune applicazioni possono tuttavia richiedere uno studio specifico per una migliore definizione del prodotto da utilizzare.

Esempio: Cuscinetto CH7009CVDTJ04 Precarico (con molle) 550 N

Curva di temperatura in funzione della velocità di rotazione:
Con un livello termico di 45°C, la velocità di rotazione aumenta da 10.000 giri/mn per cuscinetto con sfere in acciaio a 13.000 giri/mn per cuscinetto con sfere in ceramica.

MachLine[®] ML - Alta Velocità: la nostra risposta per le altissime velocità

Per le esigenze sempre maggiori dei mandrini ad altissima velocità, SNR ha sviluppato una gamma specificamente dedicata a questo tipo d'applicazione.


| Progettazione ottimizzata

La gamma ML è costituita dalle serie 71900 e 7000. La geometria interna di questi cuscinetti è stata ottimizzata per garantire il miglior comportamento con velocità limite di funzionamento:

- Angolo di contatto 17° e 25°
- Precisione 4S
- Gabbia in resina fenolica stratificata con centraggio ulteriormente migliorato rispetto alle gamme standard
- Geometria ottimizzata per una perfetta lubrificazione ad olio

Evoluzione angolo di contatto medio teorico

Il grafico accanto mostra l'evoluzione dell'angolo di contatto di un ML7011CVUJ74S in funzione della velocità di rotazione.

La scelta progettuale dell'angolo di 17° offre il vantaggio di conservare un corretto angolo di contatto anche alla massima velocità di rotazione, rispetto ad un'esecuzione con angolo di 15°.

Per facilitare il montaggio e la realizzazione delle associazioni di cuscinetti, una « V » è marcata sul diametro esterno di ogni cuscinetto, orientata nel senso dell'angolo di contatto.

Prestazioni e limitazione delle deformazioni

- Incremento della velocità di rotazione
- Capacità di carico compatibile con gli obiettivi di durata di vita dei mandrini ad alta velocità
- Fattore di velocità di 2.2x106 N.Dm

Queste prestazioni sono rese possibili dall'utilizzo di un maggior numero di sfere di diametro ridotto.

Un ulteriore vantaggio di questa scelta progettuale è costituito dall'incremento della sezione degli anelli, garanzia di limitate deformazioni in funzionamento.

MachLine[®] MLE – Tenuta stagna: la soluzione economica per definizione

Riduzione dei costi di manutenzione

Per accompagnare la tendenza alla semplificazione dei meccanismi, SNR propone la sua gamma MLE. L'utilizzo di questi cuscinetti permette di evitare i sistemi di lubrificazione convenzionali (nebbia d'olio, aria-olio) costosi, di difficile manutenzione e che possono presentare inconvenienti in funzionamento dannosi al mandrino.

Per le applicazioni con lubrificazione a grasso, permettono di evitare sia l'utilizzo di complessi ed onerosi sistemi di tenuta, sia eventuali operazioni di rilubrificazione.

Caratteristiche progettuali

La base di questa esecuzione è costituita dai cuscinetti ML ed è disponibile per le serie 71900 e 7000:

- Angolo di contatto 17° e 25°
- Precisione 4S
- Guarnizioni senza contatto: evitano il riscaldamento legato all'utilizzo di tenute striscianti
- Gioco ridotto tra il labbro della guarnizione e lo spallamento dell'anello interno: limita l'ingresso di inquinanti ed evita la perdita di lubrificante
- Quantitativo ottimale di grasso SNR-LUB GV+, selezionato dal nostro centro ricerche
- Lubrificato in ambiente non contaminato: evita l'ingresso di inquinanti in occasione del montaggio.

Per facilitare il montaggio e la realizzazione delle associazioni di cuscinetti, una « V » è marcata sul diametro esterno di ogni cuscinetto, orientata nel senso dell'angolo di contatto.

Nelle applicazioni dove il cuscinetto è sottoposto a sollecitazioni di velocità e di carico estreme, SNR propone MachLine HNS, derivato dagli sviluppi realizzati nei settori aeronautico ed aerospaziale.

Caratteristiche generali

Questo cuscinetto è costituito da anelli in acciaio inossidabile e da sfere in ceramica.

Sviluppato da SNR in collaborazione con Aubert & Duval, l'acciaio XD15N è un acciaio inossidabile

martensitico all'azoto, caratterizzato da una grande resistenza alla corrosione, all'usura ed al danneggiamento superficiale.

Prestazioni dell'acciaio XD15N...

La modalità di elaborazione convenzionale ESR -Electro Slag Remelted - e la sua buona lavorabilità ne fanno un acciaio per cuscinetti di altissime prestazioni e di **eccellente purezza inclusionare**, garanzia di una miglior tenuta alla fatica rispetto ad un acciaio convenzionale.

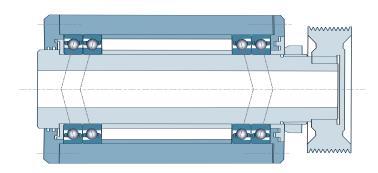
... e delle sfere in ceramica

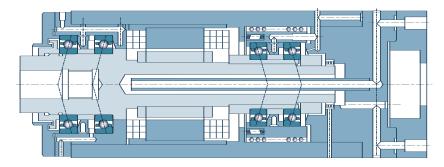
Associato alle sfere in ceramica, questo cuscinetto integra anche i vantaggi legati alle qualità tribologiche di un contatto ceramica – acciaio, ovvero un'estrema resistenza all'usura ed ai deterioramenti. (vedi pagina 31).

Il centro ricerche SNR ha stabilito per l'acciaio XD15N il coefficiente a_2 =2,8 da inserire nel calcolo della durata di vita corretta (vedere pagina 20).

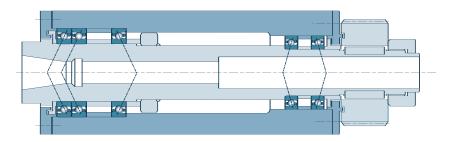
Classificazione dei settori di applicazione dei mandrini

Questa classificazione propone le configurazioni più frequenti.

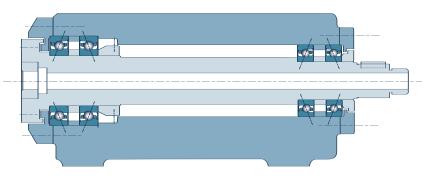

Numero di cuscinetti	Supporto	Disposizione	Settore di applicazione
	anteriore posteriore		Carichi leggeri o medi – alta velocità Montaggio adatto ad unità di alesatura, fresatura, foratura e mandrini di rettifica
4	anteriore		Carichi leggeri – altissima velocità Montaggio frequente nei mandrini di rettifica per interni con l'utilizzo di molle di precarico
	posteriore		
5	anteriore posteriore		Carichi elevati (assiali unidirezionali) velocità media Montaggio molto frequente nei mandrini di alesatrici, fresatrici, torni e nelle unità di alesatura, fresatura e foratura
6	anteriore posteriore		Carichi elevati – velocità media Montaggio interessante quando il carico assiale agisce nei due sensi Per mandrini di alesatrici, fresatrici, torni ed unità di alesatura, fresatura e foratura



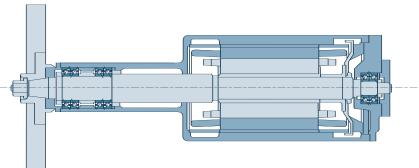
Tipologie di mandrini ed esempi di montaggio


Esempio 1: Cuscinetti MachLine Standard

Associazione Q21


Esempio 2: Cuscinetti MachLine ML

Supporto anteriore: associazione DT Supporto posteriore: associazione DT, precaricata con molle


Esempio 3: Cuscinetti MachLine MLE

Supporto anteriore: associazione Q16 Supporto posteriore: associazione DB

Esempio 4: Cuscinetti MachLine MLE

Supporto anteriore: associazione DB Supporto posteriore: associazione DB

Esempio 5: Cuscinetti MachLine Standard

Supporto anteriore: associazione Q21 Supporto posteriore: associazione DB

Gamma

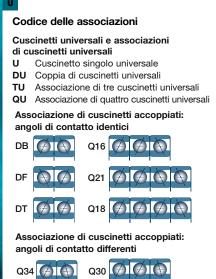
MachLine®

Per aiutarVi nella scelta, questa sezione contiene la totalità dei codici, delle caratteristiche, delle tolleranze e delle classi di precisione relative alla nostra gamma di cuscinetti e ghiere di precisione autobloccanti. Una serie di informazioni operative è inoltre disponibile per agevolare la Vostra logistica e facilitare la leggibilità della codifica, della marcatura e dei codici di condizionamento.

- Countrea, marcatura	00-03
e condizionamento	
MachLine: le gamme	40-51
Ghiere di precisione autobloccanti	52-54
Sintesi delle gamme	55
• Tolleranze e classi	56-60

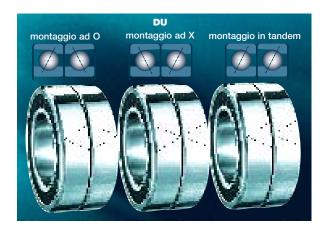
di precisione

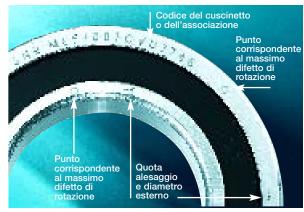
Codifica dei cuscinetti MachLine®


Fori di lubrificazione nell'anello esterno Nessun codice L1 = Anello standard

Per altre associazioni, rivolgeteVi al Vostro interlocutore SNR

Marcatura e condizionamento


Marcatura


- Cuscinetti universali: Una « V » di riferimento è tracciata sul diametro esterno del cuscinetto per facilitarne il montaggio. Questa identificazione, che attualmente concerne i cuscinetti ML ed MLE, sarà progressivamente estesa a tutte le gamme nel corso del 2006.
- Associazioni di cuscinetti accoppiati: La « V » tracciata sul diametro esterno indica la posizione dei

cuscinetti nell'associazione e permette di orientare il gruppo al montaggio (vedere raccomandazioni di montaggio). Il numero di

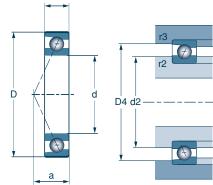
matricola dell'associazione ne permette la ricostituzione in caso di mescolamento con altri cuscinetti. La « V » dell'associazione è tracciata a 90° rispetto alla « V » marcata sul diametro esterno di ogni singolo cuscinetto.

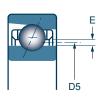
| Condizionamento

Successivamente all'applicazione di un idoneo protettivo, i cuscinetti MachLine vengono imballati singolarmente utilizzando una confezione di plastica termosaldata. Per garantire una protezione di lunga durata contro l'ossidazione, il cuscinetto deve essere conservato nel suo imballo d'origine.

- Cuscinetti universali, identificazione imballo:
 Codice del cuscinetto, data di condizionamento,
 quote di alesaggio e diametro esterno.
- Associazioni di cuscinetti accoppiati:
 Le scatole dei cuscinetti che compongono l'associazione sono rilegate. Il nastro adesivo di garanzia utilizzato riporta la dicitura "Non separare".
 Identificazione imballo: codice dell'associazione, data di condizionamento, quote di alesaggio e diametro esterno.

Per lottare contro la contraffazione, tutti i cuscinetti MachLine SNR sono provvisti di un'etichetta olografica con diversi livelli di sicurezza.




MachLine®: le gamme Alta Precisione - Standard

| Serie 719 / 70 / 72

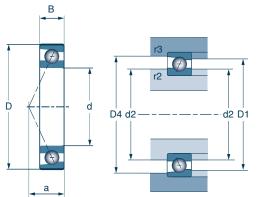
D	imensio	oni	Massa	Serie		Spallar	nenti e ra	ccordi					
d	D		kg		D1	d2	D4	r2 maxi	r3 maxi	D5		Diam.	Nb
10	22	6	0,010	71900	17,8	13,6	18,8	0,3	0,1	14,7	1,10	3,175	11
	26	8	0,018	7000	21,4	14,7	22,7	0,3	0,1	16,5	1,85	4,762	10
	30	9	0,030	7200	24,5	16,0	25,5	0,6	0,3	18,2	2,25	5,556	10
12	24	6	0,011	71901	19,6	15,4	20,6	0,3	0,1	16,5	1,30	3,175	13
	28	8	0,020	7001	23,4	16,7	24,7	0,3	0,1	18,5	1,65	4,762	11
	32	10	0,037	7201	26,0	18,3	27,9	0,6	0,3	20,5	1,85	5,953	10
15	28	7	0,015	71902	24,3	18,7	25,4	0,3	0,1	20,0	1,40	3,969	13
	32 35	9 11	0,028 0,044	7002 7202	26,9 29,0	20,2 21,1	28,2 31,3	0,3 0,6	0,1 0,3	22,0 23,3	1,65 2,10	4,762 5,953	13 11
17	30	7	0,044	71903	26,6	21,0	27,7		0,3	23,0	1,45		14
17	35	10	0,017	7003	29,4	21,0	30,7	0,3 0,3	0,1	24,4	1,45	3,969 4,762	14
	40	12	0,065	7203	33,0	24,1	35,2	0,6	0,3	26,5	2,45	6,747	11
20	37	9	0,036	71904	31,9	25,1	33,2	0,3	0,15	26,8	1,78	4,762	15
	42	12	0,063	7004	35,5	26,6	37,3	0,6	0,3	29,0	2,40	6,350	13
	47	14	0,105	7204	38,6	28,5	41,4	1,0	0,3	31,3	2,80	7,938	11
25	42	9	0,041	71905	37,4	30,6	38,7	0,3	0,15	32,3	1,75	4,762	17
	47	12	0,076	7005	40,1	32,2	42,3	0,6	0,3	34,2	2,05	6,350	15
	52	15	0,128	7205	44,5	34,0	46,9	1,0	0,3	36,8	2,80	7,938	13
30	47	9	0,047	71906	41,9	35,1	43,2	0,3	0,15	36,8	1,73	4,762	18
	55	13	0,112	7006	47,0	38,1	49,5	1,0	0,3	40,4	2,35	7,144	16
	62	16	0,200	7206	52,1	40,4	55,4	1,0	0,3	43,5	3,15	9,525	13
35	55 62	10 14	0,075	71907	48,6	41,4	50,4	0,6	0,15	43,2	1,85	5,556	18
	62 72	17	0,150 0,290	7007 7207	53,1 61,0	43,2 47,4	56,3 64,5	1,0 1,1	0,3 0,3	46,0 50,9	2,85 3,50	7,938 11,112	16 13
40	62	12	0,110	71908	55,2	46,8	57,2	0,6	0,15	49,0	2,18	6,350	19
40	68	15	0,110	7008	59,0	49,2	61,8	1,0	0,13	51,8	2,15	7,938	18
	80	18	0,370	7208	67,6	52,8	71,8	1,1	0,6	56,9	4,05	11,906	13
45	68	12	0,128	71909	60,7	52,3	62,7	0,6	0,3	54,5	2,15	6,350	20
	75	16	0,238	7009	65,0	54,7	68,6	1,0	0,3	57,5	2,85	8,731	18
	85	19	0,416	7209	72,5	57,4	77,5	1,1	0,6	61,7	4,30	12,700	14
50	72	12	0,129	71910	65,2	56,8	67,2	0,6	0,3	58,9	2,13	6,350	21
	80	16	0,256	7010	70,0	59,7	73,6	1,0	0,3	62,5	2,80	8,731	19
	90	20	0,486	7210	76,9	62,5	82,7	1,1	0,6	66,7	4,20	12,700	15
55	80	13	0,181	71911	72,5	62,1	75,8	1,0	0,3	65,4	2,25	7,144	21
	90	18 21	0,390	7011 7211	80,0	65,0	84,0	1,1	0,6	69,0	2,00	9,525 14,288	19 14
60	100		0,620	71912	87,0	68,0	92,5	1,5	0,6	72,5	2,10	· ·	
00	85 95	13 18	0,195 0,420	71912 7012	77,5 85,0	67,1 70,0	80,8 89,0	1,0 1,1	0,3 0,6	70,4 73,8	2,25 2,00	7,144 9,525	23 21
	110	22	0,420	7212	95,0	76,0 75,0	101,5	1,5	0,6	73,8 79,5	2,30	15,875	14
65	90	13	0,210	71913	82,5	72,5	86,0	1,0	0,3	74,5	1,25	7,144	27
-	100	18	0,440	7013	90,0	75,0	94,0	1,1	0,6	78,8	2,00	9,525	22
	120	23	1,140	7213	104,0	81,0	109,0	1,5	0,6	87,0	2,30	15,875	15
70	100	16	0,340	71914	91,0	79,0	95,0	1,0	0,3	81,5	1,50	8,731	24
	110	20	0,610	7014	98,5	81,5	103,0	1,1	0,6	85,8	2,50	11,112	21
	125	24	1,100	7214	109,0	86,0	116,0	1,5	0,6	91,4	2,60	17,462	14

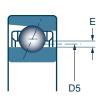
- d2 D1

Serie 719 CV 70 CV / 72 CG1

Serie 719 HV 70 HV / 72 HG1

Serie C	а	Carichi in			à limite ri/min	Serie H 71900HV	Serie H	а	Carichi in			à limite ri/min
oche o	u	C dinamico	Co statico	Grasso	Olio		Selle II	a	C dinamico	Co statico	Grasso	Olio
71900CV	5	3 050	1 520	71 000	108 000		71900HV	7	2 900	1 450	67 000	103 000
7000CV 7200CG1	6 7	5 700 7 500	2 750 3 700	60 000 53 000	95 000 82 000	-	7000HV 7200HG1	8 9	5 500 7 200	2 650 3 550	53 000 46 000	82 000 72 000
71901CV	5	3 400	1 860	64 000	97 000		71901HV	7	3 250	1 770	61 000	93 000
7001CV	7	6 200	3 200	54 000	85 000		7001HV	9	6 000	3 050	48 000	72 000
7201CG1	8	8 600	4 300	48 000	74 000	7	7201HG1	10	8 300	4 200	42 000	65 000
71902CV	6	5 100	2 850	52 000	79 000		71902HV	9	4 850	2 750	49 000	75 000
7002CV 7202CG1	8 9	7 000 9 400	4 000 5 000	46 000 42 000	72 000 65 000	-	7002HV 7202HG1	10 11	6 700 9 100	3 850 4 850	42 000 37 000	62 000 57 000
71903CV	7	5 300	3 150	46 000	70 000		71903HV	9	5 100	3 000	44 000	68 000
7003CV	8	7 400	4 450	41 000	65 000		7003HV	11	7 000	4 250	37 000	56 000
7203CG1	10	11 600	6 400	37 000	58 000	7	7203HG1	13	11 200	6 200	32 000	50 000
71904CV	8	7 700	4 900	39 000	60 000		71904HV	11	7 300	4 650	37 000	57 000
7004CV 7204CG1	10 11	11 800 15 600	7 100	35 000	55 000		7004HV 7204HG1	13 15	11 300 15 000	6 800	31 000 28 000	47 000
71905CV	9	8 300	8 900 5 800	32 000 33 000	49 000 50 000		71905HV	12	7 800	8 500 5 500	31 000	43 000 47 000
7005CV	11	13 000	8 600	30 000	47 000		7005HV	14	12 400	8 200	26 000	40 000
7205CG1	13	17 600	11 100	27 000	42 000	7	7205HG1	16	16 900	10 600	24 000	37 000
71906CV	10	8 400	6 300	29 000	44 000		71906HV	13	8 000	5 900	27 000	42 000
7006CV	12	16 700	11 700	25 000	40 000		7006HV	16	15 900	11 200	22 000	34 000
7206CG1	14	24 400	15 900	23 000	35 000		7206HG1	19	23 400	15 200	20 000	31 000
71907CV 7007CV	13	11 100 21 000	8 500 15 500	25 000 23 000	38 000 35 000		71907HV 7007HV	15 18	10 500 20 000	8 100 14 800	23 000	36 000 31 000
7207CG1	16	32 500	21 700	20 000	31 000	7	7207HG1	21	31 000	20 700	17 000	27 000
71908CV	13	14 700	11 800	21 000	33 000		71908HV	18	13 900	11 100	20 000	31 000
7008CV	15	21 600	16 800	21 000	33 000	_	7008HV	20	20 500	16 000	20 000	30 000
7208CG1	17	36 500	25 000	18 500	29 500		7208HG1	23	35 000	24 100	16 500	25 500
71909CV 7009CV	14 16	15 400 27 400	10 700 19 200	20 000 19 000	30 000 28 000		71909HV 7009HV	19 22	14 500 26 000	10 100 18 100	18 000 18 000	26 000 24 000
7209CG1	18	45 900	29 900	16 500	26 000	-	7209HG1	25	43 800	28 500	15 000	22 500
71910CV	14	15 600	11 300	19 000	28 000		71910HV	20	14 700	10 600	16 000	24 000
7010CV	17	28 200	20 200	18 000	26 000		7010HV	23	26 600	19 300	14 500	22 000
7210CG1	19	48 000	32 600	15 500	24 500		7210HG1	26	45 700	30 800	13 500	20 500
71911CV 7011CV	16	18 700	13 700	16 500	25 000		71911HV	22 26	17 600 29 000	12 900	13 500	21 500
7011CV 7211CG1	19 21	30 500 53 000	26 000 40 000	16 000 14 500	24 000 21 500	-	7011HV 7211HG1	29	51 000	24 900 38 000	14 000 12 500	22 000 19 500
71912CV	16	19 500	15 000	14 500	23 500		71912HV	23	18 400	14 200	13 500	20 000
7012CV	19	32 500	29 500	15 000	23 000		7012HV	27	30 500	28 000	14 000	21 000
7212CG1	22	65 000	49 000	12 500	19 500	7	7212HG1	31	62 000	47 000	11 000	17 500
71913CV	17	21 700	21 900	14 500	22 000		71913HV	25	20 400	20 400	14 000	21 000
7013CV 7213CG1	20 24	33 000 67 000	31 000 54 000	14 000 11 500	21 000 17 500	-	7013HV 7213HG1	28 33	31 500 64 000	29 500 52 000	13 000 10 000	19 000 16 500
71914CV	19	29 500	29 000	13 000	20 000		71914HV	28	28 000	27 500	12 500	19 000
7014CV	22	43 000	40 000	13 000	20 000		7014HV	31	40 500	37 500	12 500	19 000
7214CG1	25	77 000	60 000	11 000	16 500	7	7214HG1	35	73 000	57 000	9 700	15 000




MachLine®: le gamme Alta Precisione - Standard

| Serie 719 / 70 / 72

	Dimensio	ni	Massa	Serie		Spallam	enti e rac	cordi			ggio per ficazione	Sfere	;
d	D	В	kg		D1	d2	D4	r2 max	r3 max	D5	Е	Diam.	Nb
75	105	16	0,360	71915	96,0	84,0	100,0	1,0	0,3	86,3	1,50	8,731	26
	115	20	0,650	7015	103,5	86,5	108,0	1,1	0,6	90,7	2,50	11,112	22
	130	25	1,200	7215	114,0	91,0	121,0	1,5	0,6	96,4	2,60	17,462	15
80	110	16	0,380	71916	101,0	89,0	105,0	1,0	0,3	91,2	1,50	8,731	27
	125	22	0,850	7016	112,0	93,0	117,5	1,1	0,6	98,0	3,50	13,494	20
	140	26	1,470	7216	122,5	97,5	130,0	2,0	1,0	103,4	2,80	19,050	15
85	120	18	0,550	71917	110,0	95,0	114,0	1,1	0,6	98,6	1,80	9,525	27
	130	22	0,900	7017	117,0	98,0	122,5	1,1	0,6	102,8	3,50	13,494	21
	150	28	1,810	7217	131,0	104,0	140,0	2,0	1,0	110,3	3,10	20,638	15
90	125	18	0,580	71918	115,0	100,0	119,0	1,1	0,6	103,5	1,80	9,525	29
	140	24	1,160	7018	125,5	104,5	131,5	1,5	0,6	110,0	3,80	15,081	20
	160	30	2,240	7218	139,0	111,0	149,0	2,0	1,0	117,2	3,30	22,225	15
95	130	18	0,590	71919	120,0	105,0	124,0	1,1	0,6	108,3	2,00	10,319	28
	145	24	1,210	7019	130,5	109,5	136,5	1,5	0,6	114,8	3,80	15,081	21
100	140	20	0,820	71920	128,5	111,5	133,5	1,1	0,6	115,6	2,10	11,112	28
	150	24	1,270	7020	135,5	114,5	141,5	1,5	0,6	119,7	3,80	15,081	22
	180	34	3,230	7220	155,5	124,5	167,0	2,1	1,1	131,0	3,80	25,400	14
105	145	20	0,860	71921	133,5	116,5	138,5	1,1	0,6	120,5	2,10	11,112	29
	160	26	1,610	7021	144,5	120,5	150,0	2,0	1,0	127,0	4,00	15,875	22
110	150	20	0,890	71922	138,5	121,5	143,5	1,1	0,6	125,5	2,10	11,112	30
	170	28	2,000	7022	153,0	127,0	160,0	2,0	1,0	134,0	4,50	17,462	21
	200	38	4,530	7222	172,5	137,5	185,5	2,1	1,1	145,0	4,30	28,575	14
120	165	22	1,190	71924	151,5	133,5	157,5	1,1	0,6	137,7	3,30	13,494	28
	180	28	2,150	7024	163,0	137,0	170,0	2,0	1,0	144,0	4,50	17,462	23
	215	40	5,600	7224	185,5	149,5	197,5	2,1	1,1	157,5	4,30	28,575	16
130	180	24	1,570	71926	165,0	145,0	172,0	1,5	0,6	149,8	3,70	15,081	27
	200	33	3,180	7026	179,5	150,5	189,0	2,0	1,0	158,0	5,30	20,638	21
140	190	24	1,680	71928	175,0	155,0	182,0	1,5	0,6	159,8	3,70	15,081	29
	210	33	3,420	7028	189,5	160,5	199,0	2,0	1,0	168,0	5,30	20,638	23
150	210	28	2,620	71930	192,5	167,5	199,0	2,0	1,0	174,0	4,10	16,669	29
	225	35	4,160	7030	203,0	172,0	213,0	2,1	1,0	180,0	5,70	22,225	23
160	220	28	2,760	71932	202,5	177,5	209,0	2,0	1,0	184,0	4,10	16,669	30
	240	38	5,130	7032	216,0	184,0	227,0	2,1	1,0	192,0	6,20	23,812	23
170	230	28	2,910	71934	212,5	187,5	219,0	2,0	1,0	194,0	4,10	16,669	32
	260	42	6,980	7034	232,5	197,5	246,0	2,1	1,1	206,4	6,60	25,400	23
180	250	33	4,260	71936	229,0	201,0	237,5	2,0	1,0	208,3	4,70	19,050	30
	280	46	9,000	7036	249,5	210,5	264,0	2,1	1,1	219,8	7,80	30,163	21
190	260	33	4,480	71938	239,0	211,0	247,5	2,0	1,0	218,3	4,70	19,050	32
	290	46	9,400	7038	259,5	220,5	274,0	2,1	1,1	229,8	7,80	30,163	22
200	280	38	6,160	71940	255,5	224,5	266,0	2,1	1,0	232,0	5,50	23,812	27
	310	51	12,150	7040	276,5	233,5	292,0	2,1	1,1	243,6	8,60	33,338	21
220	300	38	6,770	71944	275,5	244,5	286,0	2,1	1,0	252,0	5,50	22,225	31
	340	56	16,280	7044	304,0	256,0	321,0	3,0	1,1	268,6	8,60	33,338	23
240	320	38	7,270	71948	295,5	264,5	306,0	2,1	1,0	272,0	5,50	22,225	33

Serie 719 CV 70 CV / 72 CG1

Serie 719 HV 70 HV / 72 HG1

Serie C	а	Carichi in			à limite i/min	Serie H	а	Carichi in			à limite i/min
		C dinamico	Co statico	Grasso	Olio			C dinamico	Co statico	Grasso	Olio
71915CV	20	30 500	31 500	12 500	19 000	71915 HV	29	29 000	29 500	12 000	18 000
7015CV	23	44 000	42 000	12 000	19 000	7015HV	32	41 500	40 000	11 000	17 000
7215CG1	26	80 000	65 000	10 000	16 000	7215HG1	36	76 000	62 000	9 100	14 500
71916CV	21 25	31 000 59 000	33 000 55 000	12 000	18 000	71916HV	30 35	29 500	30 500	11 000	17 000
7016CV 7216CG1	28	94 000	78 000	11 000 9 400	17 000 15 000	7016HV 7216HG1	39	56 000 89 000	53 000 74 000	10 500 8 500	16 000 13 000
71917CV	23	36 500	39 000	11 000	17 000	71917HV	33	34 500	36 500	9 900	15 000
7017CV	25	61 000	59 000	10 500	16 000	7017HV	36	58 000	56 000	9 900	15 000
7217CG1	30	108 000	91 000	8 700	14 000	7217HG1	41	103 000	86 000	7 800	12 000
71918CV	23	38 000	41 500	10 500	16 000	71918HV	34	35 500	39 000	9 900	15 000
7018CV	27	73 000	69 000	10 000	15 000	7018HV	39	69 000	66 000	9 200	14 000
7218CG1	32	124 000	105 000	8 100	12 500	7218HG1	44	118 000	100 000	7 300	11 000
71919CV	24	43 000	47 500	9 900	15 000	71919HV	35	40 500	44 000	9 200	14 000
7019CV	28	74 000	73 000	9 700	14 500	7019HV	40	71 000	69 000	8 900	13 500
71920CV	26	49 000	55 000	9 500	14 500	71920HV	38	46 000	51 000	8 600	13 000
7020CV	29	76 000	77 000	9 300	14 000	7020HV	41	72 000	73 000	8 600	13 000
7220CG1	36	150 000	127 000	7 200	11 000	7220HG1	50	143 000	121 000	6 400	9 800
71921CV 7021CV	27 31	50 000 84 000	57 000 86 000	9 200 8 800	14 000 13 500	71921HV 7021HV	39 44	47 000 79 000	53 000 81 000	8 600 7 900	13 000 12 000
7021CV	27	51 000	59 000	8 900	13 500	71922HV	40	47 500	55 000	8 200	
71922CV 7022CV	33	97 000	98 000	8 300	12 500	71922HV	40	92 000	93 000	7 600	12 500 11 500
7222CG1	40	177 000	160 000	6 300	9 700	7222HG1	55	169 000	153 000	5 600	8 700
71924CV	30	70 000	81 000	8 200	12 500	71924HV	44	66 000	76 000	7 500	11 500
7024CV	34	102 000	109 000	7 700	11 500	7024HV	49	96 000	103 000	6 900	10 500
7224CG1	42	193 000	187 000	5 700	8 700	7224HG1	59	184 000	178 000	5 100	7 800
71926CV	33	84 000	98 000	7 500	11 500	71926HV	48	79 000	92 000	6 900	10 500
7026CV	39	131 000	137 000	7 000	10 500	7026HV	55	124 000	130 000	6 500	9 800
71928CV	34	87 000	105 000	7 200	11 000	71928HV	50	82 000	98 000	6 400	9 800
7028CV	40	138 000	152 000	6 600	10 000	7028HV	57	130 000	144 000	6 100	9 200
71930CV	38	105 000	128 000	6 500	9 000	71930HV	56	99 000	120 000	5 900	9 000
7030CV	43	158 000	176 000	6 200	9 300	7030HV	61	149 000	167 000	5 700	8 600
71932CV 7032CV	39 46	106 000 179 000	132 000 202 000	6 200 5 800	9 400 8 800	71932HV 7032HV	58 66	100 000 169 000	123 000 191 000	5 600 5 300	8 500 8 100
71934CV	41	107 000	140 000	5 800	8 900	71934HV	61	103 000	131 000	5 300	8 100
7034CV	50	200 000	230 000	5 400	8 100	7034HV	71	189 000	218 000	5 000	7 500
71936CV	45	135 000	173 000	5 400	8 300	71936HV	67	127 000	161 000	4 900	7 500
7036CV	54	244 000	290 000	5 000	7 600	7036HV	77	231 000	275 000	4 600	7 000
71938CV	47 55	139 000	183 000	5 200	7 900	71938HV	69	131 000	171 000	4 700	7 200
7038CV	55	250 000	305 000	4 800	7 300	7038HV	79	237 000	290 000	4 400	6 700
71940CV 7040CV	51 60	192 000 280 000	243 000 355 000	4 800 4 500	7 400 6 900	71940HV 7040HV	75 85	181 000 265 000	229 000 335 000	4 400 4 200	6 800 6 300
71944CV	54	180 000	242 000	4 400	6 800	71944HV	77	170 000	226 000	4 000	6 200
7044CV	66	295 000	395 000	4 100	6 200	7044 HV	93	280 000	375 000	3 700	5 700
71948CV	57	185 000	255 000	4 200	6 400	71948HV	84	174 000	238 000	3 800	5 800

Precarico, rigidità assiale e radiale delle associazioni DU DB DF

Simbolo	Costante di cedimento		Precarico (N)	í	Rigidità assiale (N/µ	m)	,	Rigidità radiale (N/µr	n)
	K (1)	7	8	9	7	8	9	7	8	9
71900CV 7000CV 7200CG1 71900HV 7000HV	2,58 2,33 2,12 1,25 1,14	12 25 40 22 45	40 80 120 70 130	75 160 230 140 260	13 17 23 32 42	21 30 39 50 65	29 43 54 65 87	72 100 128 67 90	104 141 178 95 124	125 171 214 117 152
7200HG1	1,03	60	180	360	54	81	110	111	157	194
71901CV 7001CV 7201CG1 71901HV 7001HV 7201HG1	2,31 2,19 2,11 1,12 1,06 1,03	15 30 42 25 50	43 90 130 75 140 200	85 180 250 150 280 400	15 20 24 37 47 56	24 33 39 56 70 84	34 48 54 74 95 112	87 113 135 78 101 119	120 158 186 110 138 168	146 192 227 135 169 207
71902CV 7002CV 7202CG1 71902HV 7002HV 7202HG1	2,18 2,06 1,98 1,05 1,00 0,97	22 32 45 35 55	70 100 130 110 160 220	140 200 270 220 320 440	18 22 25 44 54 61	29 38 41 68 82 93	42 55 59 89 110 123	105 123 149 93 111 132	150 174 203 133 154 182	184 212 249 164 190 225
71903CV 7003CV 7203CG1 71903HV 7003HV 7203HG1	2,08 1,87 1,81 1,00 0,91 0,92	25 35 60 40 60	75 105 170 120 170 280	150 210 350 240 340 560	20 24 29 49 58 69	32 41 48 73 88 106	45 59 69 96 115	115 141 164 102 127 141	162 197 224 144 175 200	198 240 275 178 216 244
71904CV 7004CV 7204CG1 71904HV 7004HV 7204HG1	1,79 1,65 1,58 0,87 0,81 0,80	35 60 85 55 100	110 180 260 170 300 410	220 360 500 340 600 820	26 33 38 62 78 91	43 57 66 95 120 139	61 84 94 125 165 189	148 185 205 130 165 182	210 257 284 186 231 251	257 312 340 229 283 305
71905CV 7005CV 7205CG1 71905HV 7005HV 7205HG1	1,64 1,50 1,45 0,80 0,74 0,72	40 70 100 60 110 150	120 200 300 180 320 450	240 400 600 360 640 900	29 38 45 70 88 104	48 65 77 105 135 159	67 95 112 138 180 216	169 215 245 146 189 210	236 295 340 207 263 294	289 358 413 256 323 358
71906CV 7006CV 7206CG1 71906HV 7006HV 7206HG1	1,59 1,43 1,33 0,77 0,70 0,68	40 85 130 60 130 200	120 250 380 190 400 600	240 500 760 380 800 1200	30 43 49 72 98 117	50 72 82 111 150 177	69 105 117 146 205 239	176 246 283 153 212 247	246 341 389 220 300 346	302 416 472 271 368 423
71907CV 7007CV 7207CG1 71907HV 7007HV 7207HG1	1,45 1,30 1,32 0,70 0,63 0,65	55 100 180 90 170 280	165 300 530 260 500 840	330 600 1000 520 1000 1700	37 50 60 91 118 142	61 84 102 135 180 217	86 120 142 177 245 296	211 285 333 189 257 294	295 398 460 263 360 414	361 486 551 325 443 512

⁽¹⁾ Costante di cedimento assiale in μ m (daN)^{-2/3} 7 = precarico leggero 8 = precarico medio

^{9 =} precarico forte

Simbolo	Costante di cedimento		Precarico (N)	а	Rigidità ssiale (N/µ	m)	Rigidità radiale (N/µm) 7 8 9			
	K (1)	7	8	9	7	8	9	7	8	9	
71908CV	1,29	75	230	460	46	77	109	260	365	445	
7008CV	1,25	110	330	660	53	91	130	306	427	521	
7208CG1	1,37	185	560	1100	58	98	137	332	466	566	
71908HV	0,63	120	360	720	111	168	225	230	325	401	
7008HV	0,61	180	530	1100	125	190	265	273	383	476	
7208HG1	0,67	300	900	1800	142	215	288	297	420	518	
71909CV	1,20	80	230	460	49	79	112	272	376	467	
7009CV	1,24	130	400	800	60	105	150	333	500	625	
7209CG1	1,33	230	700	1400	71	119	171	394	567	713	
71909HV	0,59	120	360	720	115	173	232	240	339	422	
7009HV	0,61	210	650	1300	140	220	300	292	431	545	
7209HG1	0,63	370	1100	2200	169	257	346	352	504	629	
71910CV 7010CV 7210CG1 71910HV 7010HV 7210HG1	1,13 1,15 1,29 0,55 0,56 0,61	80 140 240 120 220 380	230 420 720 370 670 1140	460 840 1440 740 1330 2280	50 64 75 119 145	81 110 125 180 230 271	115 160 178 241 310 363	278 356 417 248 302 369	386 524 595 353 451 531	479 667 742 438 564 660	
71911CV	1,08	90	280	560	52	87	122	370	495	614	
7011CV	1,12	180	480	1040	71	112	166	400	538	671	
7211CG1	1,20	320	800	1600	80	122	173	449	592	723	
71911HV	0,53	150	440	880	130	193	257	325	438	543	
7011HV	0,55	280	720	1500	167	240	325	351	472	589	
7211HG1	0,57	500	1250	2500	188	267	356	394	525	647	
71912CV	1,03	100	300	600	58	94	132	401	534	667	
7012CV	1,05	200	540	1160	79	125	184	443	598	744	
7212CG1	1,15	400	1000	2000	90	136	193	501	660	806	
71912HV	0,50	150	460	920	137	208	276	354	475	592	
7012HV	0,51	320	800	1700	187	266	363	393	523	657	
7212HG1	0,56	600	1500	3000	207	294	390	434	579	713	
71913CV	0,97	150	400	860	77	122	180	432	582	724	
7013CV	1,01	220	560	1220	85	130	193	471	625	781	
7213CG1	1,09	420	1050	2100	95	145	205	533	703	859	
71913HV	0,48	240	600	1260	183	260	354	384	512	641	
7013HV	0,50	340	860	1750	197	282	378	414	553	686	
7213HG1	0,52	620	1550	3100	218	310	412	460	613	756	
71914CV	0,98	200	520	1120	84	131	194	470	623	782	
7014CV	0,99	280	720	1550	93	144	213	521	693	864	
7214CG1	1,11	460	1150	2300	96	146	207	542	716	875	
71914HV	0,48	310	800	1640	196	283	381	413	557	692	
7014HV	0,49	420	1100	2250	215	311	419	453	613	760	
7214HG1	0,53	720	1800	3600	227	322	428	477	636	784	
71915CV	0,93	220	580	1220	92	144	210	512	686	849	
7015CV	0,96	300	760	1650	99	151	225	550	728	910	
7215CG1	1,07	480	1200	2400	102	155	219	576	761	931	
71915HV	0,46	340	860	1800	214	306	416	450	602	753	
7015HV	0,47	460	1160	2400	229	327	442	482	644	802	
7215HG1	0,51	740	1850	3700	239	339	451	505	673	830	

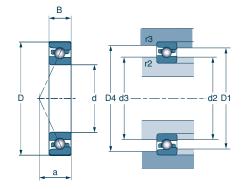
Precarico, rigidità assiale e radiale delle associazioni DU DB DF

Simbolo	Costante di cedimento		Precarico (l	N)	а	Rigidità ssiale (Ν/μι	m)	ı	Rigidità adiale (Ν/μ	m)
	K (1)	7	8	9	7	8	9	7	8	9
71916CV	0,91	220	600	1280	94	149	220	525	712	885
7016CV	0,97	380	1000	2150	106	166	244	596	799	996
7216CG1	1,03	580	1450	2900	112	170	241	632	834	1020
71916HV	0,45	360	900	1850	224	319	430	470	627	780
7016HV	0,47	600	1500	3150	250	356	484	527	702	879
7216HG1	0,50	880	2200	4400	261	370	491	550	734	905
71917CV	0,88	280	720	1550	105	163	242	585	778	969
7017CV 7217CG1	0,93 1,01	400 660	1060 1650	2250 3300	112 120	175 182	256 256	627 678	842 895	1045 1095
7217CG1 71917HV	0,43	420	1080	2250	242	349	473	510	685	856
7017HV	0,46	620	1600	3300	261	376	507	551	741	923
7217HG1	0,49	1000	2500	5000	279	396	525	590	787	971
71918CV	0,84	300	760	1650	113	174	258	628	832	1039
7018CV	0,93	480	1260	2700	119	186	274	669	896	1115
7218CG1	1,00	760	1900	3800	129	195	275	728	962	1177
71918HV	0,41	460	1160	2400	262	375	507	551	736	917
7018HV	0,45	740	1900	3950	278	400	541	586	788	984
7218HG1	0,47	1160	2900	5800	301	426	566	635	847	1045
71919CV	0,84	320	860	1850	115	182	269	645	870	1084
7019CV	0,90	500	1320	2800	125	195	286	700	940	1167
71919HV	0,41	520	1300	2700	274	390	528	576	768	958
7019HV	0,44	780	2000	4150	293	421	569	617	829	1034
71920CV	0,82	380	1000	2150	125	196	290	699	937	1167
7020CV	0,87	520	1400	2950	130	206	300	732	988	1225
7220CG1 71920HV	0,99	920 600	2300 1500	4600 3150	137 294	207 419	292 570	775 619	1024 825	1252 1033
7020HV	0,40 0,43	820	2100	4350	307	441	596	647	869	1084
7220HG1	0,48	1400	3500	7000	319	453	601	675	901	1112
71921CV	0,80	400	1040	2200	131	203	298	728	972	1205
7021CV	0,86	580	1550	3300	138	216	318	772	1040	1292
71921HV	0,39	620	1600	3250	304	439	590	641	863	1069
7021HV	0,42	920	2350	4850	325	466	629	684	918	1142
71922CV	0,78	420	1080	2300	136	211	310	757	1007	1251
7022CV	0,86	680	1800	3800	146	228	333	815	1094	1356
7222CG1	0,96	1080	2700	5400	149	225	316	852	1126	1379
71922HV	0,38	640	1650	3400	315	454	613	662	892	1110
7022HV	0,42	1060	2700	5600	341	488	660	717	962	1199
7222HG1	0,46	1660	4150	8300	351	497	658	744	993	1226
71924CV	0,77	560	1460	3100	152	237	348	849	1135	1409
7024CV	0,80	740	1950	4200	159	248	367	891	1194	1489
7224CG1	0,89	1140	2850	5700	165	248	347	949	1257	1541
71924HV	0,37	880	2200	4600	357	508	690	750 786	1001	1251
7024HV	0,39	1160	3000	6150	373	538 546	724 721	786 824	1059	1315
7224HG1	0,42	1720	4300	8600	387	546	721	824	1101	1361

⁽¹⁾ Costante di cedimento assiale in μ m (daN)^{-2/3} 7 = precarico leggero 8 = precarico medio

^{9 =} precarico forte

Simbolo	Costante di cedimento	ı	Precarico (N)	а	Rigidità assiale (N/µ	m)	r	Rigidità adiale (N/µ	m)
	K (1)	7	8	9	7	8	9	7	8	9
71926CV	0,76	660	1750	3750	163	255	376	909	1221	1520
7026CV	0,81	940	2450	5250	171	266	391	960	1283	1597
71926HV	0,37	1040	2650	5500	382	548	741	804	1078	1345
7026HV	0,40	1480	3750	7750	402	576	777	847	1135	1413
71928CV	0,72	720	1900	4000	176	275	402	981	1316	1630
7028CV	0,76	1040	2700	5800	188	292	431	1054	1408	1754
71928HV	0,35	1140	2900	5950	413	593	798	869	1165	1449
7028HV	0,37	1650	4150	8550	444	633	854	934	1247	1552
71930CV	0,70	880	2300	4850	194	303	443	1084	1450	1797
7030CV	0,74	1200	3150	6700	202	315	463	1134	1519	1887
71930HV	0,34	1380	3500	7250	455	652	882	958	1283	1599
7030HV	0,36	1900	4850	9900	477	681	919	1003	1342	1671
71932CV	0,68	920	2400	5100	202	314	462	1126	1505	1868
7032CV	0,73	1380	3600	7650	217	337	494	1215	1625	2019
71932HV	0,33	1440	3650	7550	472	676	915	994	1331	1658
7032HV	0,36	2150	5500	11350	508	729	984	1070	1437	1789
71934CV	0,65	980	2550	5400	215	335	491	1200	1603	1989
7034CV	0,71	1550	4100	8700	230	360	527	1291	1734	2152
71934HV	0,32	1550	3900	8100	505	722	978	1063	1421	1772
7034HV	0,35	2450	6250	12950	542	778	1051	1142	1532	1909
71936CV	0,65	1200	3150	6650	231	360	527	1286	1722	2134
7036CV	0,71	2000	5150	10950	250	385	565	1401	1866	2318
71936HV	0,32	1850	4800	9850	536	775	1045	1129	1524	1894
7036HV	0,35	3100	7950	16350	584	839	1130	1231	1654	2057
71938CV	0,62	1280	3350	7050	246	384	561	1372	1835	2273
7038CV	0,69	2100	5450	11500	260	406	592	1470	1962	2431
71938HV	0,31	2000	5100	10550	575	826	1116	1210	1624	2023
7038HV	0,34	3300	8350	17200	615	880	1186	1296	1735	2159
71940CV	0,65	1650	4350	9100	257	402	585	1436	1926	2382
7040CV	0,69	2400	6300	13350	274	426	624	1540	2063	2561
71940HV	0,32	2600	6600	13600	603	864	1176	1270	1702	2118
7040HV	0,34	3800	9650	19900	646	925	1247	1362	1825	2271
71944CV	0,61	1700	4400	9300	279	433	634	1554	2072	2569
7044CV	0,65	2700	7200	15400	304	477	702	1700	2288	2846
71944HV	0,30	2650	6750	13850	651	934	1259	1370	1838	2284
7044HV	0,32	4250	10900	22500	713	1026	1385	1502	2018	2511
71948CV	0,58	1800	4700	10000	296	461	678	1652	2208	2743
71948HV	0,28	2850	7250	14900	696	998	1347	1464	1962	2440



| Serie 719 / 70

Di	imensi	oni	Massa	Serie		Sp	allament	ti e racco	ordi		Passag la lubrifi	gio per cazione	Sfer	е
d	D	В	kg		D1	d2	d3	D4	r2	r3	D5	Е	Diam.	Nb
10	22	6	0,010	ML 71900	*	13,3	13,6	17,8	0,3	0,1	14,4	1,05	2,381	14
12	26 24	8	0,018 0,011	ML 7000		14,2 15,1	14,7 15,4	20,1	0,3	0,1	15,7 16,2	1,53 1,05	3,175 2,381	11 14
	28	8	0,020	ML 7001		16,2	16,7	22,1	0,3	0,1	17,7	1,58	3,175	13
15	28	7	0,015	ML 71902	*	18,3	18,7	23,7	0,3	0,1	19,7	1,35	2,778	16
	32	9	0,028	ML 7002		19,4	20,2	26,8	0,3	0,1	21,3	1,85	3,969	13
17	30 35	7 10	0,017 0,037	ML 71903 ML 7003		20,6 22,0	21,0 22,7	26,0 29,5	0,3 0,3	0,1 0,1	22,0 23,9	1,35 1,85	2,778 3,969	18 15
20	37	9	0,036	ML 71904	,	24,5	25,1	31,8	0,3	0,2	26,3	1,75	3,969	16
	42	12	0,063	ML 7004		25,3	26,6	35,7	0,6	0,3	27,9	2,63	5,556	14
25	42 47	9 12	0,041 0,076	ML 71905 ML 7005		30,0 30,9	30,6 32,2	37,3	0,3 0,6	0,2	31,8	1,75 2,63	3,969 5,556	19
30	47	9	0,076	ML 71906	,	34,5	35,1	41,3 41,8	0,8	0,3 0,2	33,5 36,2	1,73	3,969	17 22
	55	13	0,112	ML 7006	45,8	36,8	38,1	47,2	1,0	0,3	39,4	2,63	5,556	20
35	55	10	0,075	ML 71907	· · · · · ·	40,8	41,4	48,2	0,6	0,2	42,7	1,90	3,969	26
40	62 62	14 12	0,149 0,109	ML 7007	,	41,5 45,3	43,2 46,8	53,6 54,4	1,0 0,6	0,3 0,2	44,6 47,6	3,10 2,25	6,350 4,762	20 25
40	68	15	0,185	ML 7008	*	47,5	49,2	59,6	1,0	0,3	50,5	3,00	6,350	22
45	68	12	0,128	ML 71909	, -	50,8	52,3	59,9	0,6	0,3	53,0	2,23	4,762	28
	75	16	0,238	ML 7009	,	53,0	54,7	65,0	1,0	0,3	56,1	3,05	6,350	22
50	72 80	12 16	0,129 0,256	ML 71910 ML 7010	*	55,3 58,0	56,8 59,7	64,4 70,0	0,6 1,0	0,3 0,3	57,5 61,0	2,23 3,00	4,762 6,350	30 25
55	80	13	0,177	ML 71911		60,5	62,2	76,0	1,0	0,3	64,3	2,50	5,556	30
	90	18	0,396	ML 7011	79,5	65,5	66,5	83,5	1,1	0,6	69,5	1,70	7,938	22
60	85 95	13	0,190	ML 71912	*	65,6	67,1	81,0	1,0	0,3	69,3	2,50	5,556	32
65	90	18 13	0,426 0,202	ML 7012		70,5 70,5	71,5 72,5	88,5 86,5	1,1	0,6	74,4 75,0	1,67 1,25	7,938 6,350	24 29
00	100	18	0,445	ML 7013		74,0	76,5	93,5	1,1	0,6	79,4	1,67	7,938	26
70	100	16	0,330	ML 71914	*	76,5	79,0	95,5	1,0	0,3	81,9	1,63	7,938	26
	110	20	0,625	ML 7014		81,5	83,0	102,5	1,1	0,6	86,4	2,07	9,525	24
75	105 115	16 20	0,349 0,658	ML 71915 ML 7015		81,5 86,5	84,0 88,0	100,5 107,5	1,0 1,1	0,3 0,6	86,9 91,4	1,63 2,07	7,938 9,525	28 25
80	110	16	0,370	ML 71916	102,0	86,5	89,0	105,5	1,0	0,3	91,9	1,63	7,938	30
	125	22	0,874	ML 7016		93,0	94,5	116,5	1,1	0,6	98,4	2,49	11,113	23
85	120 130	18 22	0,535 0,927	ML 71917 ML 7017		93,0 98,5	96,0 99,5	114,0 121,5	1,1 1,1	0,6 0,6	99,2 103,4	1,94 2,49	8,731 11,113	29 25
90	125	18	0,562	ML 71918	,	98,5	101,0	119,0	1,1	0,6	104,2	1,94	8,731	31
	140	24	1,192	ML 7018	124,5	103,0	106,5	130,0	1,5	0,6	110,5	2,64	11,906	25
95	130	18	0,591	ML 71919		103,5	106,0	124,0	1,1	0,6	109,2	1,94	8,731	32
100	145 140	24	1,263 0,796	ML 7019		109,5 109,5	111,5 112,5	135,0 133,0	1,5	0,6 0,6	115,5 115,9	2,64 2,02	11,906 10,319	26 29
100	150	24	1,313	ML 71920		114,5	116,5	140,0	1,1 1,5	0,6	120,5	2,61	11,906	27
105	160	26	1,602	ML 7021	143,0	119,0	123,0	149,0	2,0	1,0	127,5	3,02	13,494	25
110	150	20	0,868	ML 71922		119,5	122,5	143,0	1,1	0,6	125,9	1,98	10,319	32
100	170	28	2,019	ML 7102		126,0	130,0	149,0	2,0	1,0	134,7	3,23	14,288	25
120	165 180	22 28	1,204 2,167	ML 71924 ML 7024		131,0 136,0	134,5 140,0	156,5 167,5	1,1 2,0	6,0 1,0	138,1 144,7	2,18 3,23	11,113 14,288	33 27
130	180	24	1,572	ML 71926	165,0	142,0	146,0	170,5	1,5	0,6	150,0	2,56	12,700	31
	200	33	3,306	ML 7026	177,0	148,5	154,0	185,0	2,0	1,0	158,9	3,84	16,669	26

Serie 719 CV 70 CV

Serie 719 HV 70 HV

	Serie C		а	Carichi in	di base N		à limite ri/min		Serie H		а	Carichi in			à limite ri/min
	Serie C		a	C dinamico	Co statico	Grasso	Olio		Selle II		а	C dinamico	Co statico	Grasso	Olio
ML ML	71900 7000	C	5 6	1 430 2 040	680 920	101 500 94 000	135 000 125 000	ML ML	71900 7000	H	7 8	1 360 1 950	645 870	94 000 82 500	125 000 110 000
ML	71901	С	5	1 490	705	90 000	120 000	ML	71901	Н	7	1 410	670	82 500	110 000
ML	7001	C	7	2 280	1 110	82 500	110 000	ML	7001	Н	9	2 180	1 050	75 000	100 000
ML	71902	С	6	2 030	1 030	75 000	100 000	ML	71902	Н	9	1 930	980	67 500	90 000
ML	7002	С	8	3 450	1 710	69 000	92 000	ML	7002	н	10	3 300	1 630	62 500	83 000
ML ML	71903 7003	C	7 8	2 170 3 750	1 180 2 020	67 500 61 500	90 000 82 000	ML ML	71903 7003	Н	9	2 060 3 600	1 110 1 820	61 500 55 500	82 000 74 000
ML	71904	С	8	3 900	2 080	56 500	75 000	ML	71904	н	11	3 700	1 970	51 000	68 000
ML	7004	С	10	6 550	3 600	52 500	70 000	ML	7004	Н	13	6 300	3 400	47 500	63 000
ML ML	71905 7005	C	9	4 300 7 450	2 550 4 500	47 500 44 500	63 000 59 000	ML ML	71905 7005	Н	12 14	4 100 7 100	2 400 4 050	43 000 40 000	57 000 53 000
ML	71906	С	10	4 650	3 000	41 500	55 000	ML	71906	Н	13	4 400	2 850	37 500	50 000
ML	7006	С	12	8 300	5 150	37 500	50 000	ML	7006	н	16	7 800	4 900	34 500	46 000
ML	71907	C	11	5 100	3 600	35 500	47 000	ML	71907	Н	15	4 800	3 400	32 500	43 000
ML	7007 71908	C	13 13	10 500 6 950	6 700 4 950	33 000 31 500	44 000 42 000	ML	7007 71908	Н	18 18	10 000 6 550	6 350 4 650	30 000 28 500	40 000 38 000
ML	7008	C	15	11 000	7 500	29 500	39 000	ML	7008	н	20	10 500	7 100	27 000	36 000
ML	71909	С	14	7 350	5 550	28 500	38 000	ML	71909	Н	19	6 950	5 250	25 500	34 000
ML	7009	С	16	10 900	7 600	27 000	36 000	ML	7009	Н	22	10 300	7 200	24 000	32 000
ML ML	71910 7010	C	14 17	7 600 11 700	6 000 8 700	26 500 25 000	35 000 33 000	ML ML	71910 7010	H	20 23	7 150 11 100	5 650 8 200	24 000 22 500	32 000 30 000
ML	71911	С	16	10 100	8 200	21 000	31 000	ML	71911	Н	22	9 600	7 700	18 000	28 500
ML	7011	С	19	23 300	21 700	22 000	30 500	ML	7011	н	26	22 000	20 600	19 000	27 000
ML ML	71912 7012	C	16 19	10 400 24 400	8 700 24 000	18 000 19 000	29 500 28 500	ML ML	71912 7012	H	24 27	9 800 23 000	8 200 22 600	17 500 17 000	26 500 25 500
ML	71913	С	17	17 600	18 400	19 000	30 500	ML	71913	Н	25	16 600	17 200	17 500	26 000
ML	7013	С	20	25 500	26 000	18 000	27 000	ML	7013	Н	28	23 900	24 400	16 000	24 500
ML	71914	С	19	25 000	26 000	17 000	27 000	ML	71914	Н	28	23 700	24 300	15 000	23 500
ML	7014 71915	С	22	34 000 26 000	34 500	16 500	25 000 26 000	ML	7014 71915	Н	31	32 000 24 600	32 500 26 000	15 000 14 000	21 800
ML	7015	C	23	34 500	28 000 36 000	16 500 15 500	23 750	ML	7015	н	29 32	32 500	34 000	13 500	21 700 21 000
ML	71916	С	21	27 000	30 000	15 500	24 500	ML	71916	н	30	25 500	28 000	13 700	21 000
ML	7016	С	25	44 000	44 500	14 000	21 500	ML	7016	н	35	41 500	42 500	12 500	19 000
ML ML	71917 7017	C	23 26	31 500 46 000	35 000 49 000	14 500 13 500	22 500 20 500	ML ML	71917 7017	Н	33 36	29 500 43 500	32 500 46 000	12 500 11 500	20 000 18 500
	71918	С	23	32 500	37 000	13 500	21 000		71918	н	34	30 500	34 500	11 700	18 700
ML	7018	С	28	52 000	56 000	12 500	19 100	ML	7018	н	39	49 000	53 000	10 500	17 200
ML ML	71919 7019	C	24 28	33 000 53 000	38 000 59 000	12 700 12 000	20 000 18 400	ML ML	71919 7019	Н	35 40	31 000 50 000	35 500 55 000	11 000 10 000	17 700 16 500
	71920	С	26	42 500	49 000	11 700	18 500	ML	71920	Н	38	40 000	45 500	10 500	16 700
ML	7020	C	29	54 000	61 000	11 500	18 000	ML	7020	н	41	51 000	57 000	9 500	15 900
ML	7021	С	31	65 000	72 000	10 500	16 500	ML	7021	Н	44	61 000	68 000	9 000	14 900
ML ML	71922 7022	C	28	44 500	53 000	10 500 10 000	17 000 15 800	ML	71922 7022	Н	41 47	42 000	50 000 76 000	9 300	14 700
ML		С	33	72 000 52 000	81 000 64 000	9 500	15 800 15 500	ML	71924	Н	47	68 000 49 000	76 000 60 000	8 500 8 600	13 900 13 500
ML	7024	С	34	75 000	88 000	9 000	14 000	ML	7024	Н	49	70 000	82 000	8 000	12 500
ML	71926	С	33	64 000	79 000	8 500	14 000	ML	71926	Н	48	60 000	73 000	7 500	11 500
ML	7026	С	39	97 000	115 000	8 000	12 500	ML	7026	Н	55	92 000	108 000	7 000	10 500

MachLine®: le gamme Alta Velocità e stagni ML & MLE

Precarico, rigidità assiale e radiale delle associazioni DU DB DF

S	imbolo		Costante di cedimento		Precarico (N)		a	Rigidità ssiale (N/µn	1)	r	ո)	
			K (1)	7	8	9	7	8	9	7	8	9
ML ML	71900 7000 71900	С	2,58 2,33 1,25	7 10 11	21 30 35	45 60 70	12 12 25	18 19 37	25 26 49	58 61 54	83 87 37	105 108 98
ML ML	7000 71901		1,14 2,31	16 7	50 22	100 45	26 12	39 19	51 26	57 61	82 89	103 110
ML ML	7001 71901 7001	C H	2,19 1,12 1,06	11 12 18	35 35 55	70 70 110	15 26 30	22 39 45	30 51 59	70 58 66	102 83 95	127 103 119
ML ML	71902 7002 71902	C H	2,18 2,06 1,05	10 17 16	30 50 50	60 100 100	15 18 32	23 27 48	31 36 64	75 88 70	107 125 102	133 155 127
ML ML ML	7002 71903 7003 71903	C C	1,00 2,08 1,87 1,00	30 11 19 17	80 35 55 50	160 65 110 100	39 17 20 35	55 27 31 62	72 34 41 67	85 84 101 78	117 122 142 110	146 148 176 137
ML ML	7003 71904 7004	H C	0,91 1,79 1,65	30 20 35	90 60 100	180 120 200	42 21 27	63 33 40	82 44 54	94 107 132	134 152 185	167 189 230
ML ML	71904 7004 71905	Н	0,87 0,81 1,64	30 50 22	90 160 65	180 320 130	44 54 25	66 82 38	85 106 51	98 119 124	140 174 176	175 217 219
ML ML	7005 71905 7005	H H	1,50 0,80 0,74	35 35 60	110 100 180	220 200 360	30 52 65	47 76 96	63 99 125	151 116 144	218 163 206	271 203 257
ML ML ML	71906 7006 71906 7006	C H	1,59 1,43 0,77 0,70	23 40 35 65	70 120 110 200	140 250 220 390	28 35 58 74	43 54 87 111	57 73 112 143	139 176 128 165	199 251 186 238	248 316 232 295
ML ML ML	71907 7007 71907 7007	C H	1,45 1,30 0,70 0,63	25 50 40 80	80 160 120 250	150 320 240 500	32 40 67 83	50 62 99 125	64 82 129 162	160 198 149 185	233 288 214 268	284 359 267 335
ML ML ML	71908 7008 71908 7008	C H	1,29 1,25 0,63 0,61	35 55 55 90	100 160 160 260	210 330 330 520	37 44 77 92	55 65 113 135	75 88 148 175	185 218 172 205	260 308 243 290	329 387 307 362
ML ML ML	71909 7009 71909 7009	C H	1,20 1,22 0,59 0,60	35 55 60 90	110 160 170 260	220 330 350 520	40 44 86 92	61 65 124 135	81 88 162 175	200 218 191 205	290 308 268 290	361 387 338 362
ML ML ML	71910 7010 71910 7010	C H	1,13 1,14 0,55 0,56	40 60 60 90	110 180 180 280	230 350 360 560	44 49 90 100	64 74 132 150	86 98 171 194	219 245 200 224	303 349 287 324	383 431 357 404
ML ML ML	71911 7011 71911 7011	C H	1.06 1,15 0.59 0,64	50 73 80 120	150 233 240 368	300 470 480 740	50 50 104 107	75 78 154 160	99 104 199 207	252 254 225 239	357 369 331 344	443 460 414 430
ML ML ML	71912 7012 71912 7012	C C H	1.01 1,08 0.57 0.60	50 78 80 130	160 252 240 395	310 508 490 800	52 55 109 117	80 85 161 173	104 113 209 225	269 275 241 260	381 401 354 373	473 500 442 468

Simbolo	Costante di cedimento		Precarico (N))	as	Rigidità ssiale (N/µn	1)	Rigidità radiale (N/µm)		
	K (1)	7	8	9	7	8	9	7	8	9
ML 71913 C	1.03	62	185	370	53	81	107	268	382	475
ML 7013 C	1.03	85	271	546	59	92	122	298	434	541
ML 71913 H	0.57	88	288	576	108	164	212	240	354	442
ML 7013 H	0.57	140	430	860	126	188	243	281	405	506
ML 71914 C	1.04	92	265	530	61	91	121	306	431	536
ML 7014 C	1.03	115	360	720	66	102	135	332	480	598
ML 71914 H	0.57	130	265	820	123	185	239	274	399	498
ML 7014 H	0.57	190	573	1160	141	208	271	313	449	563
ML 71915 C	0.98	98	282	564	65	98	129	329	462	575
ML 7015 C	0.99	120	378	754	69	106	141	346	502	624
ML 71915 H	0.54	138	442	884	132	199	257	294	430	537
ML 7015 H	0.55	199	590	1200	147	216	281	327	466	585
ML 71916 C	0.94	104	300	600	70	104	138	351	494	615
ML 7016 C	1.00	151	475	950	74	114	152	372	539	670
ML 71916 H	0.52	148	470	940	141	213	275	315	459	574
ML 7016 H	0.56	252	750	1500	158	233	302	352	502	627
ML 71917 C ML 7017 C ML 71917 H ML 7017 H	0.90	123	352	704	75	111	147	374	526	655
	0.94	163	517	1030	80	124	165	404	586	728
	0.52	174	550	1100	150	226	292	336	488	610
	0.52	270	810	1620	171	253	327	381	545	681
ML 71918 C	0.89	130	374	748	79	118	157	399	561	698
ML 7018 C	0.92	184	570	1160	85	131	175	430	620	776
ML 71918 H	0.50	185	588	1176	160	242	312	358	522	652
ML 7018 H	0.51	315	925	1880	184	270	352	410	583	732
ML 71919 C	0.87	134	385	770	82	122	162	412	579	720
ML 7019 C	0.90	195	608	1220	89	138	183	450	650	810
ML 71919 H	0.48	191	603	1206	166	249	322	370	538	672
ML 7019 H	0.50	326	960	1950	191	281	366	426	606	760
ML 71920 C	0.87	172	495	980	88	132	174	443	623	773
ML 7020 C	0.88	200	628	1260	93	143	190	466	674	839
ML 71920 H	0.48	246	770	1540	178	267	346	398	578	722
ML 7020 H	0.49	336	1005	2010	198	293	379	441	631	788
ML 7021 C	0.89	238	760	1520	97	151	200	489	711	885
ML 7021 H	0.49	398	1200	2400	208	308	398	462	663	828
ML 71922 C	0.83	190	540	1080	97	145	192	489	685	852
ML 7022 C	0.87	265	810	1650	103	156	209	516	741	927
ML 71922 H	0.46	270	846	1692	196	295	381	439	637	795
ML 7022 H	0.48	448	1330	2700	220	324	422	490	699	877
ML 71924 C	0.79	226	645	1290	108	161	213	542	760	946
ML 7024 C	0.83	287	885	1820	111	170	228	558	803	1008
ML 71924 H	0.44	322	1000	2000	218	326	421	487	704	880
ML 7024 H	0.46	480	1440	2880	237	351	454	528	756	944
ML 71926 C	0.78	278	790	1580	116	172	228	582	816	1015
ML 7026 C	0.81	375	1170	2400	124	191	256	626	905	1135
ML 71926 H	0.43	400	1240	2480	235	351	454	524	759	948
ML 7026 H	0.45	630	1880	3800	267	393	511	594	848	1062

⁽¹⁾ Costante di cedimento assiale in μ m (daN)^{-2/3} 7 = precarico leggero 8 = precarico medio

^{9 =} precarico forte

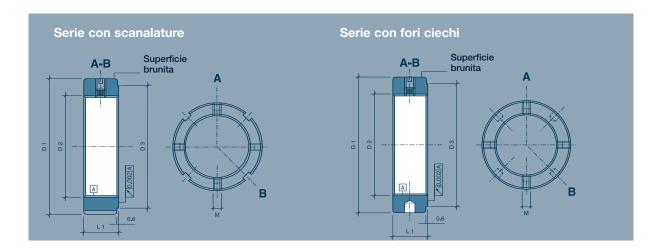


Ghiere di precisione autobloccanti

Le ghiere di precisione autobloccanti sono particolarmente raccomandate per tutti i montaggi di cuscinetti MachLine. Permettono il precarico di un'associazione garantendolo nel tempo. In caso di carichi assiali elevati, posizionano l'associazione in modo affidabile e duraturo.

Caratteristiche

- Acciaio ad alta resistenza (1000 N/mm²) per tutta la gamma e protezione di tutte le superfici (brunitura) ad eccezione della faccia d'appoggio e della filettatura
- Perpendicolarità faccia d'appoggio/alesaggio < 2 µm
- Filettatura metrica realizzata con tolleranza 5H (secondo ISO 965/1)
- Serie stretta e larga
- Fori ciechi o scanalature per il serraggio della ghiera
- Bloccaggio della ghiera assicurato da 2 o 4 inserti in bronzo



| Precauzioni al montaggio

Come per i cuscinetti, togliere le ghiere dall'imballo appena prima del loro utilizzo per evitare ogni rischio di contaminazione ed appoggiarle sulla faccia brunita. Effettuato il serraggio della ghiera con apposita chiave (DIN 1810A e DIN 1810B), serrare le viti di fissaggio degli inserti con chiave esagonale tipo Allen (per le serie a 4 inserti, serrare progressivamente ed in croce). Si raccomanda la sostituzione delle ghiere in occasione della sostituzione dei cuscinetti.

SNR propone una gamma completa di chiavi di serraggio solide, sicure e di semplice utilizzo. Le 5 chiavi della nostra gamma sostituiscono i 15 modelli fissi equivalenti. Per maggiori informazioni: www.snr-bearings.com oppure consultare il servizio tecnico SNR.

Serie	Numero inserti	Scanalature	Fori ciechi
Stretta	2	В	TB
Olicita	4	BR	TBR
Larga	2	BP	TBP
Laiga	4	BPR	TBPR

| Dimensioni e codici

Ghiere tipo B e TB

Filettatura	Co	odice	Peso		Dime	nsioni		Vite di fissaggio		Ghiera	
D2	-	-	_	D1	L1	D3	М	Mbl	Far	Ma	Md
-	-	-	kg	mm	mm	mm	mm	N.m	kN	N.m	N.m
M8 x 0,75	B 8/0.75	-	0,01	16	8	11	M4	1	27	4	26
M12 x 1	B 12/1	_	0,015	22	8	18	M4	1	47	8	31
M15 x 1	B 15/1	-	0,02	25	8	21	M4	1	65	10	32
M17 x 1	B 17/1	_	0,03	28	10	24	M5	3	100	15	32
M20 x 1	B 20/1	TB 20/1	0,04	32	10	28	M5	4-5	140	18	39
M20 x 1,5	B 20/1,5	TB 20/1,5	0,04	32	10	28	M5	4-5	126	18	39
M25 x 1,5	B 25	TB 25	0,06	38	12	33	M5	4-5	198	25	56
M30 x 1,5	B 30	TB 30	0,08	45	12	40	M5	4-5	240	32	63
M35 x 1,5	B 35	TB 35	0,11	52	12	47	M5	4-5	263	40	72
M40 x 1,5	B 40	TB 40	0,15	58	14	52	M6	8-10	290	55	97
M45 x 1,5	B 45	TB 45	0,18	65	14	59	M6	8-10	322	65	115
M50 x 1,5	B 50	TB 50	0,20	70	14	64	M6	8-10	351	85	132
M55 x 2	B 55	TB 55	0,25	75	16	68	M8	16-18	378	95	148
M60 x 2	B 60	TB 60	0,27	80	16	73	M8	16-18	405	100	186
M65 x 2	B 65	TB 65	0,28	85	16	78	M8	16-18	431	120	196
M70 x 2	B 70	TB 70	0,38	92	18	85	M8	16-18	468	130	228
M75 x 2	B 75	TB 75	0,42	98	18	90	M8	16-18	497	150	255
M80 x 2	B 80	TB 80	0,49	105	18	95	M8	16-18	527	160	291
M85 x 2	B 85	TB 85	0,52	110	18	100	M8	16-18	558	190	315
M90 x 2	B 90	TB 90	0,75	120	20	110	M8	16-18	603	200	369
M95 x 2	B 95	TB 95	0,78	125	20	115	M8	16-18	637	220	391
M100 x 2	B 100	TB 100	0,82	130	20	120	M8	16-18	688	250	432

Ghiere tipo BP e TBP

Filettatura	Co	odice	Peso		Dime	nsioni		Vite di fissaggio		Ghiera	
D2	-	-	-	D1	L1	D 3	М	Mbl	Far	Ma	Md
	-	-	kg	mm	mm	mm	mm	N.m	kN	N.m	N.m
M20 x 1	BP 20/1	TBP 20/1	0,12	38	20	28	M5	4-5	255	18	39
M20 x 1,5	BP 20/1,5	TBP 20/1,5	0,12	38	20	28	M5	4-5	225	18	39
M25 x 1,5	BP 25	TBP 25	0,17	45	20	33	M6	8-10	405	25	56
M30 x 1,5	BP 30	TBP 30	0,24	52	22	40	M6	8-10	491	32	63
M35 x 1,5	BP 35	TBP 35	0,28	58	22	47	M6	8-10	560	40	72
M40 x 1,5	BP 40	TBP 40	0,29	62	22	52	M8	16-18	585	55	97
M45 x 1,5	BP 45	TBP 45	0,37	68	24	59	M8	16-18	641	65	115
M50 x 1,5	BP 50	TBP 50	0,46	75	25	64	M8	16-18	706	85	132
M55 x 2	BP 55	TBP 55	0,92	88	32	68	M8	16-18	940	95	148
M60 x 2	BP 60	TBP 60	1,14	98	32	73	M8	16-18	1 070	100	186
M65 x 2	BP 65	TBP 65	1,29	105	32	78	M8	16-18	1 155	120	196
M70 x 2	BP 70	TBP 70	1,49	110	35	85	M8	16-18	1 230	130	228
M75 x 2	BP 75	TBP 75	2,25	125	38	90	M10	30-32	1 300	150	255
M80 x 2	BP 80	TBP 80	2,97	140	38	95	M10	30-32	1 420	160	291
M85 x 2	BP 85	TBP 85	3,44	150	38	100	M10	30-32	1 510	190	315
M90 x 2	BP 90	TBP 90	3,59	155	38	110	M10	30-32	1 596	200	369
M95 x 2	BP 95	TBP 95	3,73	160	38	115	M10	30-32	1 656	220	391
M100 x 2	BP 100	TBP 100	3,70	160	40	120	M10	30-32	1 780	250	432

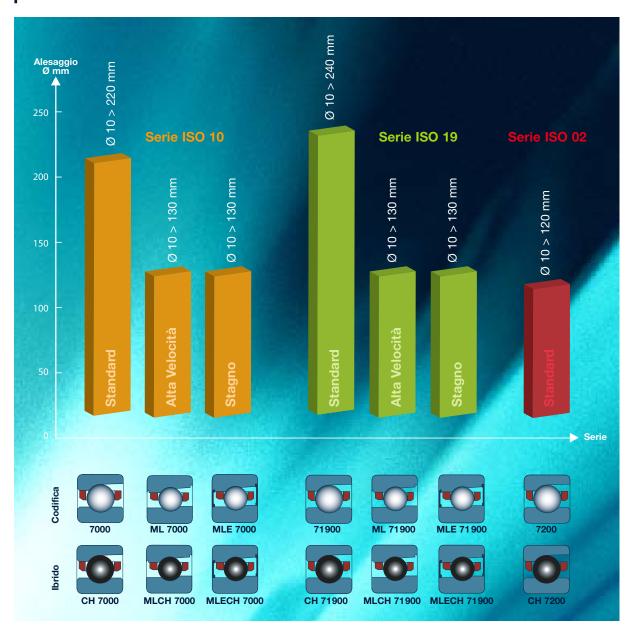
Far: Carico assiale di rottura (corrispondente alla rottura del filetto). In funzionamento, il carico assiale massimo applicabile alla ghiera deve essere pari al 75% del carico assiale di rottura Far relativo alla ghiera / Ma: Coppia di montaggio della ghiera / Md: Coppia di allentamento della ghiera (montata con le coppie Ma e Mbl corrispondenti) / Mbl: Coppia di serraggio degli inserti / D1: Diametro esterno / D3: Diametro della faccia d'appoggio / L1: Larghezza

| Dimensioni e codici

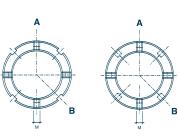
Ghiere tipo BR e TBR

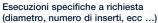
Filettatura	Co	odice	Peso		Dime	nsioni		Vite di fissaggio		Ghiera	
D2	-			D1	L1	D3	М	Mbl	Far	Ma	Md
-	-	-	kg	mm	mm	mm	mm	N.m	kN	N.m	N.m
M25 x 1,5	BR 25	TBR 25	0,06	38	12	33	M5	3-4	198	25	85
M30 x 1,5	BR 30	TBR 30	0,08	45	12	40	M5	3-4	240	32	96
M35 x 1,5	BR 35	TBR 35	0,11	52	12	47	M5	3-4	263	40	107
M40 x 1,5	BR 40	TBR 40	0,15	58	14	52	M6	6-8	290	55	127
M45 x 1,5	BR 45	TBR 45	0,18	65	14	59	M6	6-8	322	65	149
M50 x 1,5	BR 50	TBR 50	0,20	70	14	64	M6	6-8	351	85	180
M55 x 2	BR 55	TBR 55	0,25	75	16	68	M8	12-14	378	95	206
M60 x 2	BR 60	TBR 60	0,27	80	16	73	M8	12-14	405	100	255
M65 x 2	BR 65	TBR 65	0,28	85	16	78	M8	12-14	431	120	277
M70 x 2	BR 70	TBR 70	0,38	92	18	85	M8	12-14	468	130	304
M75 x 2	BR 75	TBR 75	0,42	98	18	90	M8	12-14	497	150	357
M80 x 2	BR 80	TBR 80	0,49	105	18	95	M8	12-14	527	160	396
M85 x 2	BR 85	TBR 85	0,52	110	18	100	M8	12-14	558	190	444
M90 x 2	BR 90	TBR 90	0,75	120	20	110	M8	12-14	603	200	501
M95 x 2	BR 95	TBR 95	0,78	125	20	115	M8	12-14	637	220	550
M100 x 2	BR 100	TBR 100	0,82	130	20	120	M8	12-14	688	250	603

Ghiere tipo BPR e TBPR


Filettatura	Co	odice	Peso		Dime	nsioni		Vite di fissaggio		Ghiera	
D2	-		-	D1	L1	D 3	М	Mbl	Far	Ма	Md
-	-		kg	mm	mm	mm	mm	N.m	kN	N.m	N.m
M20 x 1	BPR 20/1	TBPR 20/1	0,12	38	20	28	M5	3-4	255	18	56
M20 x 1,5	BPR 20/1,5	TBPR 20/1,5	0,12	38	20	28	M5	3-4	225	18	56
M25 x 1,5	BPR 25	TBPR 25	0,17	45	20	33	M6	6-8	405	25	85
M30 x 1,5	BPR 30	TBPR 30	0,24	52	22	40	M6	6-8	491	32	96
M35 x 1,5	BPR 35	TBPR 35	0,28	58	22	47	M6	6-8	560	40	107
M40 x 1,5	BPR 40	TBPR 40	0,29	62	22	52	M8	12-14	585	55	127
M45 x 1,5	BPR 45	TBPR 45	0,37	68	24	59	M8	12-14	641	65	149
M50 x 1,5	BPR 50	TBPR 50	0,46	75	25	64	M8	12-14	706	85	180
M55 x 2	BPR 55	TBPR 55	0,92	88	32	68	M8	12-14	940	95	206
M60 x 2	BPR 60	TBPR 60	1,14	98	32	73	M8	12-14	1 070	100	255
M65 x 2	BPR 65	TBPR 65	1,29	105	32	78	M8	12-14	1 155	120	277
M70 x 2	BPR 70	TBPR 70	1,49	110	35	85	M8	12-14	1 230	130	304
M75 x 2	BPR 75	TBPR 75	2,25	125	38	90	M10	24-26	1 300	150	357
M80 x 2	BPR 80	TBPR 80	2,97	140	38	95	M10	24-26	1 420	160	396
M85 x 2	BPR 85	TBPR 85	3,44	150	38	100	M10	24-26	1 510	190	444
M90 x 2	BPR 90	TBPR 90	3,59	155	38	110	M10	24-26	1 596	200	501
M95 x 2	BPR 95	TBPR 95	3,73	160	38	115	M10	24-26	1 656	220	550
M100 x 2	BPR 100	TBPR 100	3,70	160	40	120	M10	24-26	1 780	250	603

Far: Carico assiale di rottura (corrispondente alla rottura del filetto). In funzionamento, il carico assiale massimo applicabile alla ghiera deve essere pari al 75% del carico assiale di rottura Far relativo alla ghiera / Ma: Coppia di montaggio della ghiera / Md: Coppia di allentamento della ghiera (montata con le coppie Ma e Mbl corrispondenti) / Mbl: Coppia di serraggio degli inserti / D1: Diametro esterno / D3: Diametro della faccia d'appoggio / L1: Larghezza


Sintesi delle gamme: ricerca della soluzione SNR più idonea


| Gamma MachLine

| Gamma ghiere di precisione

Serie	Numero d'inserti	Scanalature	Fori ciechi	Applicazione	Alesaggio
	2	В	-	I IA:II:	8 a 100
Stretta		-	TB	Utilizzo normale	20 a 100
Stretta	4	BR	TBR	Sforzi medi: esigenza di massima planarità	25 a 100
Larga	2	BP	TBP	Sforzi elevati	20 a 100
Larga	4	BPR	TBPR	Sforzi molto elevati: esigenza di massima planarità	20 a 100

Tolleranze e classi di precisione

| Tolleranze degli anelli

La precisione di rotazione del mandrino influisce direttamente sulla precisione di lavorazione.

SNR realizza i suoi cuscinetti nelle classi:

- altissima precisione P4S
- super precisione ISO2

Anello interno	um										
		da	6	10	18	30	50	80	120	150	180
Alesaggio (d) in mm		fino a	10	18	30	50	80	120	150	180	250
Tolleranze	Simbolo (1)										
Tolleranze	Δ dmp	ISO 4	0 -4	0 -4	0 -5	0 -6	0 -7	0 -8	0 -10	0 -10	0 -12
medio	∆ ump	ISO 2	0 -2,5	0 -2,5	0 -2,5	0 -2,5	0 -4	0 -5	0 -7	0 -7	0 -8
One like	Serie 719 Vdp max	ISO 4 ISO 2	4 2,5	4 2,5	5 2,5	6 2,5	7 4	8 5	10 7	10 7	12 8
Ovalità	Serie 70-72	ISO 4 ISO 2	3 2,5	3 2,5	4 2,5	5 2,5	5 4	6 5	8 7	8 7	9 8
Conicità	Vdmp max	ISO 4 ISO 2	2 1,5	2 1,5	2,5 1,5	3 1,5	3,5 2	4 2,5	5 3,5	5 3,5	6 4
Difetto di rotazione	K _{ia} max	ISO 4 ISO 2	2,5 1,5	2,5 1,5	3 2,5	4 2,5	4 2,5	5 2,5	6 2,5	6 5	8 5
Deviazione della faccia rispetto all'alesaggio	S _d max	ISO 4 ISO 2	3 1,5	3 1,5	4 1,5	4 1,5	5 1,5	5 2,5	6 2,5	6 4	7 5
Deviazione della pista rispetto alla faccia	S _{ia} max	ISO 4 ISO 2	3 1,5	3 1,5	4 2,5	4 2,5	5 2,5	5 2,5	7 2,5	7 5	8 5
Tolleranza sulla larghezza del singolo cuscinetto	Δ Bs	ISO 4 ISO 2	0 -40	0 -80	0 -120	0 -120	0 -150	0 -200	0 -250	0 -250	0 -300
Parallelismo delle facce	VBs max	ISO 4 ISO 2	2,5 1,5	2,5 1,5	2,5 1,5	3 1,5	4 1,5	4 2,5	5 2,5	5 4	6 5

⁽¹⁾ I simboli delle tolleranze sono conformi alla norma ISO 492

Equivalenze delle norme di precisione

Qualità	ISO	ABEC	DIN
Alta precisione	4	7	P4
Altissima precisione P4S (Standard SNR)	2: dinamiche 4: dimensionali	9: dinamiche 7: dimensionali	P2: dinamiche P4: dimensionali
Super precisione	2	9	P2

Anello estern	o											
Tolleranze in I		da	2,5	18	30	50	80	120	150	180	250	31
		fino a	18	30	50	80	120	150	180	250	315	400
Tolleranze	Simbolo (1)											
Tolleranza sul diametro	Δ Dmp	ISO 4	0 -4	0 -5	0 -6	0 -7	0 -8	0 -9	0 -10	0 -11	0 -13	0 -15
medio	,	ISO 2	0 -2,5	0 -4	0 -4	0 -4	0 -5	0 -5	0 -7	0 -8	0 -8	0 -10
Ovalità	Serie 719 VDp max	ISO 4 ISO 2	4 2,5	5 4	6 4	7 4	8 5	9 5	10 7	11 8	13 8	15 10
Ovanta	Serie 70-72	ISO 4 ISO 2	3 2,5	4 4	5 4	5 4	6 5	7 5	8 7	8 8	10 8	11 10
Conicità	VDmp max	ISO 4 ISO 2	2 1,5	2,5 2	3 2	3,5 2	4 2,5	5 2,5	5 3,5	6 4	7 4	8 5
Difetto di rotazione	K _{ea} max	ISO 4 ISO 2	3 1,5	4 2,5	5 2,5	5 4	6 5	7 5	8 5	10 7	11 7	13 8
Deviazione della faccia rispetto al diametro esterno	S _D max	ISO 4 ISO 2	4 1,5	4 1,5	4 1,5	4 1,5	5 2,5	5 2,5	5 2,5	7 4	8 5	10 7
Deviazione della pista rispetto alla faccia	S _{ea} max	ISO 4 ISO 2	5 1,5	5 2,5	5 2,5	5 4	6 5	7 5	8 5	10 7	10 7	13 8
Tolleranza sulla larghezza del singolo cuscinetto	Δ Cs	ISO 4 ISO 2	Valori i	dentici a d	quelli dell	'anello in	terno del s	singolo cu	scinetto			
Parallelismo delle facce	VCs max	ISO 4 ISO 2	2,5 1,5	2,5 1,5	2,5 1,5	3 1,5	4 2,5	5 2,5	5 2,5	7 4	7 5	8 7

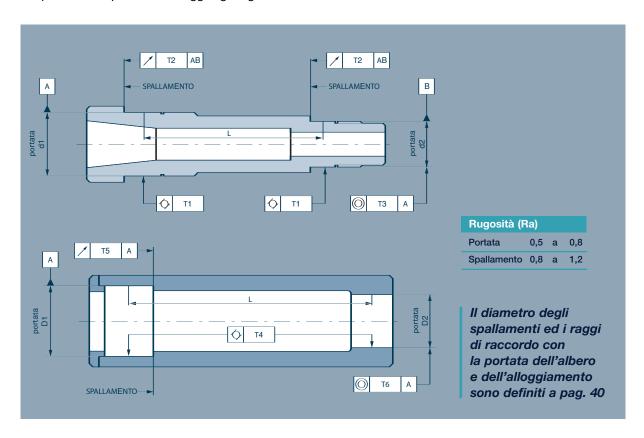
⁽¹⁾ I simboli delle tolleranze sono conformi alla norma ISO 492

| Tolleranze delle portate

Per assicurare le migliori condizioni di funzionamento e di precarico, vengono prescritti gli accoppiamenti

In fase di montaggio si consiglia comunque la selezione dei cuscinetti e delle loro portate in modo da evitare l'assemblaggio di parti agli estremi delle loro tolleranze, possibili cause di giochi o serraggi troppo elevati.

Tolleranze in µm


		Albero				Alloggi	amento		
Diametro	ISO4		ISO2		ISC	O4		IS	O2
nominale (mm)				Supp fis:			porto revole	Supporto fisso	Supporto scorrevole
	h4 (1)	js4(2)		JS5(1)	K5(2)	H5(3)	Gioco(4)	JS4	
	0	+3	0	_	<u>-</u>	_	_	_	_
10 a 18	-5	-3	-4	-	-	-	-	-	-
	0	+3	0	+4	+1	+9		+3	+8
> 18 a 30	-6	-3	-4	-4	-8	0	2 a 10	-3	+2
> 30 a 50	0	+4	0	+5	+2	+11	0 44	+4	+10
> 50 a 50	-7	-4	-5	-5	-9	0	3 a 11	-4	+2
> 50 a 80	0	+4	0	+6	+3	+13	3 a 12	+4	+11
> 00 a 00	-8	-4	-5	-6	-10	0	3 a 12	-4	+3
> 80 a 120	0	+5	0	+7	+2	+15	5 a 15	+5	+13
> 00 a 120	-10	-5	-6	-7	-13	0	5 a 15	-5	+3
> 120 a 180	0	+6	0	+9	+3	+18	5 a 17	+6	+16
> 120 a 100	-12	-6	-8	-9	-15	0	5 a 17	-6	+4
> 180 a 250	0	+7	0	+10	+2	+20	7 - 00	+7	+18
> 100 a 250	-14	-7	-10	-10	-18	0	7 a 22	-7	+4
> 250 a 315	-	-	-	+11	+3	+23		+8	+21
> 200 a 315	-	-	-	-11	-20	0	7 a 27	-8	+5
> 315 a 400	-	-	-	+12	+3	+25	7 a 30	+9	+23
> 315 a 400	-	-	-	-12	-22	0	7 a 30	-9	+5

⁽¹⁾ Carico leggero (C/P > 16) o medio ($10 \le C/P \le 16$) (2) Carico forte (C/P < 10) o applicazioni ad alta velocità (gamma ML)

⁽³⁾ Tolleranza proposta. Per ottimizzare il montaggio, accoppiare cuscinetti ed alloggiamento col gioco definito nella colonna (4).

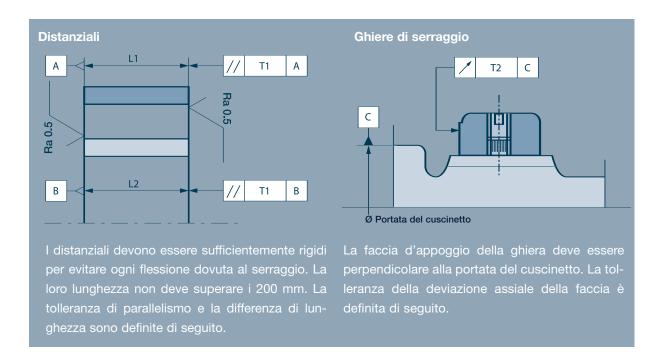
| Tolleranze di forma e posizione di spallamenti e portate

Le prestazioni del mandrino (precisione di rotazione, livello termico) dipendono in gran parte dalla qualità di spallamenti e portate. Per raggiungere gli obiettivi fissati, queste caratteristiche devono essere tassativamente realizzate secondo le tolleranze prescritte da SNR.

Tolleranze massime in µm

Diametro nominale della portata	Albero						Alloggiamento					
	T1		T2		Т3		T4		T5		T6	
	ISO 4	ISO 2	ISO 4	ISO 2	ISO 4	ISO 2	ISO 4	ISO 2	ISO 4	ISO 2	ISO 4	ISO 2
10 a 18	1,5	1	2	1,2	0,013L ⁽¹⁾	0,008L ⁽¹⁾	-	-	-	-	-	-
> 18 a 30	2	1	2,5	1,5	0,013L ⁽¹⁾	0,008L ⁽¹⁾	2	1,5	2,5	1,5	0,015L ⁽¹⁾	0,010L ⁽¹⁾
> 30 a 50	2	1,5	2,5	1,5	0,013L ⁽¹⁾	0,008L ⁽¹⁾	2,5	1,5	2,5	1,5	0,015L ⁽¹⁾	0,010L ⁽¹⁾
> 50 a 80	2,5	1,5	3	2	0,013L ⁽¹⁾	0,008L ⁽¹⁾	3	2	3	2	0,015L ⁽¹⁾	0,010L ⁽¹⁾
> 80 a 120	3	2	4	2,5	0,025L ⁽¹⁾	0,013L ⁽¹⁾	3,5	2,5	4	2,5	0,030L ⁽¹⁾	0,015L ⁽¹⁾
> 120 a 180	3,5	2	5	3,5	0,025L ⁽¹⁾	0,013L ⁽¹⁾	4,5	3	5	3,5	0,030L ⁽¹⁾	0,015L ⁽¹⁾
> 180 a 250	4	2,5	7	4,5	0,025L ⁽¹⁾	0,013L ⁽¹⁾	5	3,5	7	4,5	0,030L ⁽¹⁾	0,015L ⁽¹⁾
> 250 a 315	-	-	-	-	-	-	6	4	8	6	0,030L ⁽¹⁾	0,015L ⁽¹⁾
> 315 a 400	-	-	-	-	-	-	6	4,5	9	7	0,030L ⁽¹⁾	0,015L ⁽¹⁾

⁽¹⁾ L = Distanza tra i supporti in mm



Tolleranze e classi di precisione

Tolleranze dei componenti: distanziali e ghiere di serraggio

La precisione di rotazione del mandrino dipende anche dalla precisione di distanziali e ghiere.

Tolleranze massime in µm

Alesaggio nominale		Dista	Ghiera				
del distanziale o diametro nominale	т	2	Differenza d L1 -		T2		
della portata del cuscinetto	ISO4	ISO2	ISO4	ISO2	ISO4	ISO2	
10 a 18	2	1	2	1	5	3	
> 18 a 30	2	1	2	1	6	4	
> 30 a 50	2	1	2	1	7	4	
> 50 a 80	2	1	3	2	8	5	
> 80 a 120	3	2	3	2	10	6	
> 120 a 180	3	2	4	3	12	8	
> 180 a 250	4	3	5	4	14	10	

Influendo su produttività, sicurezza ed ambiente, la manutenzione è fondamentale, soprattutto quando riguarda particolari molto sollecitati quali i cuscinetti.

La manutenzione è un atto di prevenzione, basata innanzitutto sulla conoscenza degli uomini come si può vedere nel prossimo capitolo.

Stoccaggio: regole da rispettare

Per conservare le sue qualità originarie durante il periodo di stoccaggio, ogni cuscinetto SNR subisce un processo di condizionamento specifico.

Le precauzioni prese al montaggio influenzano le prestazioni del mandrino.

Processo di condizionamento SNR e protezione del cuscinetto

- Assemblaggio realizzato in ambiente climatizzato e privo di polvere.
- Applicazione in ambiente controllato di un protettivo antiossidante e ad alto potere coprente. Questa protezione è compatibile con tutti i lubrificanti correntemente utilizzati.
- Un sacchetto termosaldato ed una scatola in cartone completano l'imballo.

Condizioni normali di stoccaggio

- Pulizia generale
- Assenza di polvere, ambiente non corrosivo
- Temperatura raccomandata: 18°C / 20°C
- Tasso igrometrico massimo: 65%. Un imballo specifico può essere necessario per situazioni climatiche eccezionali (esempio: imballo specifico per i paesi tropicali)
- Evitare scaffalature in legno
- Mantenere una distanza di almeno 30 cm dal suolo, dai muri e dalle canalizzazioni degli impianti di riscaldamento
- Evitare l'esposizione al sole
- Conservare le scatole in posizione orizzontale ed evitare di impilarne un numero eccessivo
- Disporre le scatole in modo tale da poter leggere il codice del cuscinetto senza manipolazioni

Durata di stoccaggio

In condizioni normali di stoccaggio, il condizionamento standard di ogni singolo cuscinetto SNR garantisce

una lunga durata di conservazione, a condizione che l'imballo non venga aperto, modificato o deteriorato.

Montaggio: regole da rispettare

Precauzioni generali al montaggio

Il montaggio dei mandrini deve svolgersi in un locale pulito, correttamente illuminato ed isolato dai siti di produzione per evitare ogni rischio d'inquinamento. Togliere i cuscinetti dal loro imballo al momento del loro utilizzo. Non lavare in nessun caso i cuscinetti.

| Verifiche prima del montaggio

Verificare preventivamente le dimensioni e le tolleranze dei componenti del mandrino (vedere pagine 58 a 60). Lavare ed asciugare accuratamente ogni componente prima del montaggio. Il cuscinetto deve essere conservato nel suo imballo originario, che non deve essere aperto fino al momento del suo utilizzo.

Installazione dei cuscinetti

Trattare le portate del cuscinetto con un prodotto anticorrosione. SNR raccomanda l'utilizzo di una pasta di montaggio.

I prodotti utilizzati per la protezione del cuscinetto sono compatibili con tutti i lubrificanti prescritti da SNR.

Scelta delle dimensioni di diametro esterno ed alesaggio

Per ottenere un livello di precarico ed una ripartizione del carico esterno i più uniformi possibili tra tutti i cuscinetti di un'associazione, si raccomanda di realizzare fra i cuscinetti ed i loro supporti (albero ed alloggiamento) una condizione di interferenza / gioco quasi identica.

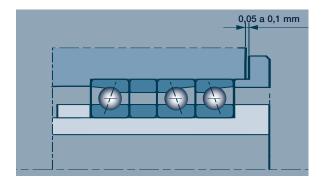
Le quote del diametro esterno e dell'alesaggio sono riportate sull'imballo: la scelta delle dimensioni più idonee può essere fatta senza togliere il cuscinetto dalla sua scatola.

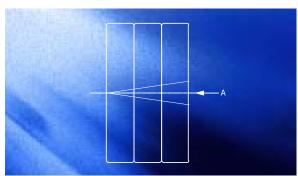
Montaggio: regole da rispettare

| Lubrificazione

- Introdurre il grasso con una siringa graduata.
- Su richiesta, SNR può fornire cuscinetti ingrassati (suffisso D oppure cuscinetti a tenuta stagna MLE).
- In caso di lubrificazione ad olio, è necessario intro-

durre nei cuscinetti un piccolo quantitativo del medesimo olio lubrificante. Questa precauzione eviterà un eventuale avviamento a secco che potrebbe danneggiare seriamente i cuscinetti.


Determinazione della lubrificazione idonea: vedere pagina 25. In caso di lubrificazione a grasso, rispettare i volumi consigliati a pagina 26.


Posizionamento dei cuscinetti

 Cuscinetti universali e coppie universali: Prestare attenzione al posizionamento dei cuscinetti in funzione del tipo di montaggio desiderato. Per le gamme ML e MLE, la « V » di riferimento tracciata sull'anello esterno di ogni cuscinetto agevola l'operazione.

- Associazione di cuscinetti:

- I cuscinetti di un'associazione non sono utilizzabili per realizzare altre configurazioni.
- Ricostituire la « V » tracciata sul diametro esterno dei cuscinetti per il loro corretto posizionamento nell'associazione.
- Orientare la punta della « V » nel verso della spinta assiale predominante A.

Montaggio

- Il posizionamento per dilatazione è preferibile ad ogni altro metodo. In caso questo non sia possibile, occorrerà esercitare una pressione su tutta la superficie dell'anello da posizionare. Evitare di trasmettere lo sforzo di posizionamento attraverso le sfere.
- Evitare ogni urto per il posizionamento del cuscinetto.

| Orientare i difetti

- Difetto di rotazione di albero e/o alloggiamento rispetto al difetto di rotazione dei cuscinetti
- Distanziali
- Allineare i punti relativi al difetto di rotazione degli anelli interni

Serraggio

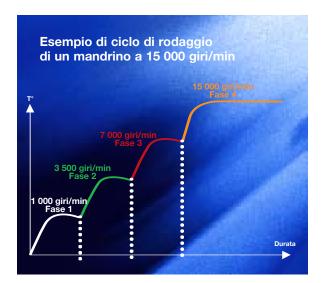
Le viti di fissaggio delle flange vanno bloccate progressivamente ed in croce per evitare errori di posizionamento dell'anello esterno nell'alloggiamento.

- Verificare eventuali deformazioni dell'albero per

effetto del serraggio con ghiera, misurando il difetto di rotazione e la deviazione del naso mandrino prima e dopo il serraggio della ghiera. I valori devono essere identici.

| Equilibratura

Dopo il montaggio dei cuscinetti, è necessario realizzare un'equilibratura dell'albero per garantire il buon funzionamento del mandrino ad alta velocità di rotazione.



Montaggio: regole da rispettare

Rodaggio

La precisione di rotazione e la durata di vita sono considerevolmente influenzate dal modo in cui si esegue il rodaggio. Questo deve essere effettuato per fasi successive dipendenti dal tipo di mandrino e dall'evoluzione della temperatura. La velocità di rotazione della prima fase deve indicativamente corrispondere a 10⁵ N.Dm per permettere, con certezza, la creazione di un film di lubrificante. Il tempo di rodaggio di ogni fase dipende dal tempo di stabilizzazione della temperatura registrata. A temperatura stabilizzata, proseguire alla fase successiva.

Danneggiamenti caratteristici

I danneggiamenti provocati dalla fatica del materiale sono estremamente rari nei cuscinetti mandrini MachLine.

Il decadimento del mandrino si osserva piuttosto con la deriva di determinate caratteristiche, rilevabili sui pezzi realizzati e che evidenziano la necessità di una manutenzione:

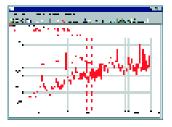
- La difficoltà al mantenimento delle quote
- Un incremento dei difetti geometrici quali circolarità o difetto di rotazione
- Una rugosità non conforme
- Una superficie di aspetto particolare (sfaccettature, superficie "vibrata"...)
- Una rumorosità di funzionamento anomala

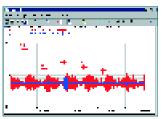
In generale, i cedimenti dei cuscinetti sono dovuti ad un difetto di lubrificazione nel 70% dei casi e ad un sistema di protezione inefficace nel 10% dei casi. Anche un urto violento tra pezzo ed utensile può danneggiare irrimediabilmente il mandrino ed i cuscinetti.

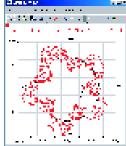
È raro che sia il cuscinetto ad essere causa diretta di un cedimento prematuro del mandrino.

Analisi vibratoria: approccio globale ed obiettivo

La manutenzione deve tenere conto del contesto generale, perchè le interazioni tra il cuscinetto ed altri elementi forniscono preziosi indizi.


Questo approccio globale, frutto dell'esperienza di molteplici applicazioni, è comunque indissociabile da dati obiettivi, garanti della neutralità della diagnosi. Perciò SNR si avvale di partner specializzati.


SNR e 01dB Metravib


Questa collaborazione permette di offrirVi i servizi di uno specialista in analisi vibratoria che, oltre ad un parere tecnico, può progettare ed installare un sistema di controllo fisso o portatile che risolverà il problema di realizzare una manutenzione condizionata delle macchine rotanti.

I nostri servizi Vi permetteranno di definire:

- i metodi di sorveglianza ed i mezzi di controllo,
- le periodicità di controllo,
- l'organizzazione da implementare,
- la formalizzazione dei risultati,
- la realizzazione di bilanci tecnico-economici.

Queste prestazioni si adattano ad ogni caso particolare, sia che si tratti di interventi isolati, sia di contratti a lungo termine.

Verifiche tecniche e formazione: trasmettere il nostro "know-how"

Verifiche tecniche: conoscere le cause

I nostri esperti sono a Vostra disposizione per i montaggi iniziali o l'analisi tecnica di cuscinetti smontati dopo un certo periodo di funzionamento. Per effettuare un'analisi ottimale in caso di verifica, è indispensabile:

- smontare i cuscinetti con grande accuratezza (difficoltà ad identificare eventuali difetti dovuti alle condizioni di lavoro da quelli provenienti da uno smontaggio non accurato)
- far pervenire i cuscinetti nello stato in cui si trovano (non lavati)
- identificare la posizione dei cuscinetti nel mandrino
- comunicare ai nostri servizi le condizioni di montaggio e di funzionamento del mandrino: velocità, sforzi, lubrificazione...
- fornire, quando possibile, uno schema del mandrino

| Frequenze caratteristiche

Per un controllo continuo dei mandrini in funzionamento, SNR può fornire a richiesta le frequenze caratteristiche degli elementi dei suoi cuscinetti. Queste informazioni sono disponibili sul catalogo interattivo:

www.snr-bearings.com/catalogue

Tuttavia, a causa della bassa deriva dei segnali registrati, l'interpretazione dei risultati deve essere affidata ad uno specialista.

I Formazione: prestazioni su misura

SNR propone un programma completo di formazioni, realizzato e svolto dai nostri tecnici esperti in cuscinetti per macchina utensile.

Destinato sia ai settori commerciali che desiderano approfondire la loro conoscenza del prodotto, sia ai settori tecnici di progettazione, di produzione e di manutenzione, questo programma di formazione Vi permetterà di:

- Conoscere meglio la gamma MachLine,
- Individuare le soluzioni tecniche adattate alle Vostre applicazioni,
- Affrontare il calcolo di un mandrino,
- Conoscere gli aspetti determinanti del montaggio e del funzionamento di un cuscinetto mandrino.

SNR è aperta 24 ore su 24, 7 giorni su 7.

Consultare i nostri cataloghi on-line, verificare la disponibilità dei prodotti in tempo reale, ordinare on-line 24 ore su 24, 7 giorni su 7 per i Vostri approvvigionamenti e interventi d'urgenza, è semplice e gratuito... www.snr-bearings.com/catalogue rubrica « Catalogue Industry ».

Approfittate di questi servizi direttamente su www.snr-bearings.com, compilando il modulo a disposizione o contattando direttamente il Vostro interlocutore SNR.

SNR: le esigenze del settore aeronautico al servizio della macchina utensile

Partner di progetti aerospaziali molto ambiziosi come l'Airbus A380 o l'Ariane 5,

SNR ha trasferito questo "know-how" al mondo della macchina utensile, creando la gamma MachLine: cuscinetti di alta precisione, adatti ad esigenze estreme di velocità, protezione e affidabilità.

